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Abstract

This report develops the mathematical properties of random operators of the Schrödinger

equation, with the ultimate goal of proving the phenomenon of localization in a material

that has high disorder. Localization is when a wave stops propagating due to random

potential wells and destructive interference. It has long been of interest to determine

under what conditions such localization will occur.

First, some functional analysis and measure theory is presented in the general setting

of a self-adjoint operator T in a separable Hilbert space H. Emphasis is put on the

properties of the spectrum σ(T ), which is the set of λ such that T −λI is not invertible.

When T is self-adjoint, σ(T ) is a closed subset of R, and has physical meaning as the

energy a particle can take. In addition, the measure-theoretic structure of the spectrum

determines when localization will occur.

Once the mathematical theory is developed in general, specific operators are con-

sidered over the space of square-summable complex sequences, `2(Zd). The discrete

Laplacian H0 acts as a kinetic energy operator in `2(Zd), and its spectrum is found to

be [0, 4d]. Then, a random potential multiplication operator Vω is considered, where

Vω(n) is an IID random variable for each n ∈ Zd, with distribution P0. It is found that

σ(Vω) = supp P0. Finally, the Hamiltonian operator is defined as Hω = H0 + Vω. For

P-almost all ω, it is shown that σ(H) is [0, 4d] + supp P0.

With the proper setup, localization is defined and discussed. When a material has

sufficiently high disorder, or is at a sufficiently low energy, localization can be shown to

occur. Then, some weaker results are developed related to bounded states of a particle,

which are implied by localization. The Green’s functions are introduced as a powerful

tool to describe how eigenfunctions decay. Some weak results are provided which help

gain familiarity with using Green’s functions.

A proof of localization is given which relies on strong multiscale analysis, a result

which looks at eigenfunction decay on pairs of cubes in space. After this proof is given,

the actual statement of multiscale analysis is considered. The heuristics of a proof are

provided, with a discussion about large disorder implying localization at the end.

Finally, further discussion is provided about the strength of the assumptions in this

paper. Results which are related to localization, as well as current research interests,

are also looked at.
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Introduction

This report develops the mathematical and physical preliminaries to understand the

Anderson Model and the effect of localization. In some ways this is a condensed version

of selected chapters in [13]. Topics are more carefully selected to maintain focus on the

goal of proving localization. Some results near the end are not proven with full rigor.

However, more proofs are presented in total, and those which follow closely with [13]

provide more detail to aid the reader.

The author began this project with a background in undergraduate real analysis,

linear algebra, probability and some physics. This thesis is meant to document the au-

thor’s exploration of the topic in such a way that a student with a similar background

and motivation can comfortably understand the topic. By working in the language of

finite matrices for intuition, it is quite possible for readers with a similar background to

understand the results given here. However, there is material hiding in the background.

In particular, the mathematics developed requires some familiarity with measure the-

ory. To fully appreciate the physical phenomenon being represented, it is good to have

knowledge of introductory quantum mechanics (see [6], for example.)

A typical introduction to quantum mechanics starts with the time dependent Schrödinger

equation

i}
∂Ψ

∂t
= HΨ, H = − }2

2m
∇2 + V . (1)

Separation of variables, Ψ(x, t) = ψ(x)φ(t), yields the equation

i}ψ(x)
dφ

dt
= φ(t)Hψ(x) .

When performing separation of variables, we wish to get all functions of t on the left,

and all functions of x on the right. Then, since these are independent, they must equal

some separation constant E:

i}
1

φ(t)

dφ

dt
=

1

ψ(x)
Hψ(x) = E .
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The equation in time is an ordinary differential equation with solution φ(t) = exp(−iEt/}),

and the equation in x is called the time-independent Schrödinger equation:

Hψ(x) = Eψ(x), Ψ(x, t) = ψ(x)e−iEt/} . (2)

We can thus view E as an eigenvalue for the operator H, and ψ a corresponding eigen-

vector when viewed in the appropriate function space. More typically, ψ is called an

eigenfunction.

This paper looks at a different space, namely `2(Zd). This treats physical space as a

grid, which helps represent the crystalline structure of many regular solids. In particular,

this paper concerns itself with a random form of H in this space, where the potential

operator V is a random variable at each point in space. Then, we are interested in the

exponential decay of the eigenfunctions ψ. This occurs when localization happens in a

solid.

Anderson localization has been an important phenomenon since its discovery in 1958,

giving rise to interesting physical systems and providing an impetus to discover new

mathematics to describe it. It is used to learn more about conductivity in alloy ma-

terials, and is also an important component in the development of LED light bulbs.

Mathematicians have used many methods to describe this effect, with it first being pro-

posed in a discrete system on Zd, as is discussed in this paper; more recently some very

unique methods have been developed to study it in continuous space (see [7]).

To understand why Anderson localization is of such interest, imagine the following

situation: You are standing in a room, full of boxes and jagged objects across various

surfaces, and across the room you see your friend clap. But you never hear the sound

which should follow. Somewhere along the way, the sound waves of the clap bounced

around in such a way as to destructively interfere, and the wave never reaches you. This,

in a sense, is localization.

Localization was first discovered in the context of electron waves moving through

a metal alloy. Current moves through an object via electrons, so if the energy of the

electrons as they propagate through the material is arranged randomly in a particular

way, there becomes a high chance they will never reach the other end of the object.

Specifically, electron waves may get trapped, or localized, with high probability in a

particular part of the material. Hence the expected propagation would not occur.

The study of localization has moved beyond the realm of its discovery with electrons.

As waves are such a fundamental object to modern physics, it has been natural for studies

to consider how localization occurs in sound and light waves as well [11]. For example,

development of LEDs has benefited from mathematical understanding of localization.
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LEDs are created by the control of electrons jumping orbitals at specific energy levels,

causing emittance of a particular color. When localization can be controlled further,

LEDs can become far more efficient.

When discussing the movement of electrons, we use energy as the central piece of

information. Their kinetic energy is well-known, but the potential energy is a dynamic

quantity, changing with the movement of the electrons themselves. As electrons move

through orbitals, their charges interact with other particles. In addition, when an elec-

tron leaves an orbital a potential “hole” is left there, which strongly affects electrons in

the area. These dynamical interactions make it very difficult to predict where electrons

may be localized in a material, but mathematics has come a long way in describing the

circumstances under which it will occur. While slightly out of date, [16] has a good

description of the state of discovery in localization.

What makes localization so interesting to many is its random nature. Due to the

way alloys and other materials are made, their structures are effectively a random mix

of multiple elements. This randomness can be mathematicall realized as an electron at

point x being affected by a potential Vω(x) that is caused by its neighbors. A deter-

ministic potential may have terms of the form V (x) =
∑

i qf(x − i), where q is some

coupling constant or charge, and i ∈ Zd are the neighbors of the point x. However,

there may be a random component where each i ∈ Zd is displaced some amount from

its expected position in the structure, which may be described by f(x− i− δi(ω)). It is

also possible that the charges or coupling constants are randomly changing, forcing the

terms to become qi(ω)f(x− i).
It will likely aid the reader to keep these examples in mind, and continually refer

to the physical phenomenon that localization represents. While the math can be heavy

when describing the exponential decay of eigenfunctions, recall this means the probability

an electron wave is moving outside of some finite space is vanishing to 0. The wave will

not propagate, and thus current (or sound, or light) will not travel as expected.

Localization continues to provide interesting mathematical and physical problems

to be solved. This is a rich area for discovery, with many deep implications for how

the physical world works. As we continue to move forward in understanding this phe-

nomenon, many surprises likely lie in wait.
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Chapter 1

Preliminaries

This chapter develops the relevant measure theory and functional analysis required to

understand how localization is mathematically described. The proofs presented are

mostly adapted from [13] and [17], though arguments are expanded upon to provide

greater clarification and context.

Throughout this chapter, we will work on a separable complex Hilbert space H, and

use a self-adjoint linear operator T . This means that T = T ∗, where T ∗ is the adjoint

operator. This implies 〈v, Tw〉 = 〈Tv, w〉. There is a well-defined norm

‖T‖ := sup
f∈H

‖Tf‖
‖f‖

which will be used throughout.

1.1 Spectral Calculus

The basic object of interest for much of this paper is the spectrum of an operator. We

will see the spectrum has a physical meaning as an energy interval, and is the object

through which we define localization. First, we must define its complement, the resolvent

set.

Definition 1.1 (Resolvent set). The resolvent set of T , denoted ρ(T ), is the set of all

complex numbers µ such that T−µ := T−µI is a bijective mapping between the domain

of T and H.

Since the mapping is bijective, the operator T − µ is invertible. We call (T − µ)−1 the

resolvent of T and µ.
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Definition 1.2 (Spectrum). The spectrum of T , denoted σ(T ), is the complement of

the resolvent, C−ρ(T ). In particular, it consists of all λ such that T−λ is not invertible.

The spectrum is an extension of the idea of an eigenvalue. If λ is an eigenvalue, so that

Tv = λv for some non-zero v ∈ H, then (T − λ)v = 0 for a non-zero v, and hence

T − λ is not injective. Thus, it can be helpful for the reader to think about matrices

and their eigenvalues when working through much of what is to follow. However, it is

also necessary to note that not every element of the spectrum is an eigenvalue.

Now we turn to the technical details of why we would want our T to be self-adjoint.

It turns out σ(T ) has very nice properties in this case, as summarized by the following

theorem.

Theorem 1.3. For self-adjoint T , the spectrum σ(T ) is a closed subset of R. If in

addition T is bounded, then σ(T ) is also bounded, and hence compact.

Proof. Because T is self-adjoint, T = T ∗, so 〈Tx, x〉 = 〈x, Tx〉 for all x. Assume

λ ∈ σ(T ). Then Tx = λx for some x, so

〈Tx, x〉 = 〈x, Tx〉
〈λx, x〉 = 〈x, λx〉
〈x, λx〉 = 〈x, λx〉 .

The last step on the left is moving λ through the inner product, requiring us to take the

conjugate. The final equality implies that λ = λ, hence λ ∈ R, so σ(T ) ⊂ R.

To show σ(T ) is closed in R, we show ρ(T ) is open in C. We first show a calculation

with a formal power series, then consider its convergence for a particular case. Choose

λ0 ∈ ρ(T ). Then we can write

1

λ− T
=

1

λ− T + λ0 − λ0

=
1

λ0 − T

(
1

1− λ0−λ
λ0−T

)
.

We can expand the expression in parentheses as a geometric series:

1

λ− T
=

1

λ0 − T

∞∑
n=0

(
λ0 − λ
λ0 − T

)n
.

This series converges precisely when |λ0 − λ|/|λ0 − T | < 1. We consider the inverse

operator Rλ0(T ) = (λ0I − T )−1, so we can write

R̂ :=
1

λI − T
= Rλ0(T )

∞∑
n=0

(λ0 − λ)n [Rλ0(T )]n , |λ0 − λ| <
1

‖Rλ0(T )‖
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based on our analysis of convergence. By definition R̂ = (λI − T )−1, so we see imme-

diately that (λI − T )R̂ = R̂(λI − T ) = I, which implies R̂ = Rλ(T ), so λ ∈ ρ(T ). In

particular, since λ is in the ‖Rλ0(T )‖−1 ball around λ0 ∈ ρ(T ), for any λ0 ∈ ρ(T ) there

is some open neighborhood B such that λ ∈ B implies λ ∈ ρ(T ). By definition, ρ(T ) is

indeed open. Hence σ(T ) = C− ρ(T ) is closed.

Finally, assume that T is bounded. We will show that σ(T ) is bounded by ‖T‖. Indeed,

let |λ| > ‖T‖ and define the sequence of operators

Rλ,N = −1

λ

N∑
n=0

T n

λn
. (1.1)

Since |λ| > ‖T‖ by assumption, this sequence converges as N →∞; assume it converges

to some operator Sλ. We aim to show that Sλ = Rλ(T ) = (λI − T )−1, and thus we

compare Sλ(T −λI) and (T −λI)Sλ with I. We will only show the formal computation

for the first case, since the second case is exactly analogous, only switching the order in

which we multiply. For any N ∈ N we have

‖Sλ(T − λI)− I‖ = ‖S(T − λI)−Rλ,N(T − λI) +Rλ,N(T − λI)− I‖
≤ ‖(S −Rλ,N)(T − λI)‖+ ‖Rλ,N(T − λI)− I‖

where the second line comes from factoring out the (T−λI) on the right, and the triangle

inequality. Now, we can simplify the first term with the Cauchy-Schwarz inequality, and

then we expand out the second term with the definition of Rλ,N , obtaining

‖Sλ(T − λI)− I‖ ≤ ‖Sλ −Rλ,N‖ ‖T − λI‖+

∣∣∣∣∣
∣∣∣∣∣−Tλ

N∑
n=0

T n

λn
+

N∑
n=0

T n

λn
− I

∣∣∣∣∣
∣∣∣∣∣

≤ ‖Sλ −Rλ,N‖ ‖T − λI‖+

∣∣∣∣∣
∣∣∣∣∣
N∑
n=0

T n

λn
−

N+1∑
n=1

T n

λn
− I

∣∣∣∣∣
∣∣∣∣∣

≤ ‖Sλ −Rλ,N‖ ‖T − λI‖+

∣∣∣∣∣∣∣∣TN+1

λN+1

∣∣∣∣∣∣∣∣ .
We take the limit as N → ∞. By assumption, Rλ,N → Sλ, so the first term goes to

0. Also by assumption, ‖T‖n/|λ|n → 0, hence the entire right side goes to 0. Thus

‖Sλ(T − λI) − I‖ → 0, so Sλ(T − λI) = I. As stated before, we can do a similar

calculation to find (T − λI)Sλ = I, which implies that Sλ = Rλ(T ). In particular, if

|λ| > ‖T‖, then λ ∈ ρ(T ). Thus σ(T ) is bounded by ‖T‖. By the Heine-Borel theorem,

σ(T ) is also compact.

These are very useful results when discussing the spectrum. Later, the fact that σ(T ) is

closed will allow us to determine a useful way to approximate the spectrum by the set of
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generalized eigenvalues. Its compactness will be used in defining f(T ) in the next part

of this section. Also, knowing that σ(T ) ⊂ R for self-adjoint T is of significant physical

importance. The Hamiltonian operator H we will work with is indeed self-adjoint, thus

the eigenvalues have a physical interpretation as the energy levels attainable by a particle.

One property of the spectrum which is familiar in the finite case is unitary invariance.

When dealing with matrices, we can consider diagonalizing a matrix A as A = P−1DP .

Then the eigenvalues of A and D are both the same. This concept extends to opera-

tors in general. If we have a self-adjoint linear operator A on a Hilbert space, then for

any unitary operator U (which means UU∗ = U∗U = I), we know that the spectrum

of A and the spectrum of UAU−1 are the same. There is one other useful property,

whose proof requires a bit more measure theory than is warranted for this paper. The

interested reader can find a proof online in [1].

Theorem 1.4. Suppose Mf is the multiplication operator defined by Mfϕ = fϕ, where

f is a continuous complex-valued function. Suppose the domain of f is open and the

range of f is closed. Then σ(Mf ) is precisely the range of f .

More broadly, the theorem says that σ(Mf ) is the essential range of f , which is what the

cited proof deals with. For our purposes, it is much easier to note that when mapping

from an open set, the essential range of f is just the closure of the image, im f . Thus,

if the range of f is closed the essential range is the range of f . With this knowledge, it

is often useful to find a unitary operator that transforms the operator of interest into a

multiplication operator. Then the spectrum is simple to find. This will be the approach

taken with the discrete Laplacian in Section 2.1.

The next task is developing f(T ) for certain functions f . This will in turn allow us

to formulate a calculus based on operators and their spectra. It is simple to define P (T )

for any polynomial P . It is understood T n is T composed with itself n times, so

T nϕ = T (T (· · · (T (ϕ)) · · · ))
n times

. (1.2)

With this definition, there are a few properties of the spectrum we can make use of.

First, a lemma whose proof is is beyond the scope of this paper. (The interested reader

can find a proof in [17].)

Lemma 1.5. Let T be a bounded, self-adjoint operator. Then ‖T‖ = sup
λ∈σ(T )

|λ|.
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Another useful result with a rather simple proof tells us the spectrum can “move inside”

the polynomial for calculation:

Lemma 1.6. For a polynomial P and a bounded, self-adjoint operator T ,

σ(P (T )) = {P (λ) | λ ∈ σ(T )} . (1.3)

Proof. Let P be a polynomial and λ ∈ σ(T ). Then the polynomial P (x) − P (λ) has a

root at x = λ, so it factors as

P (x)− P (λ) = (x− λ)Q(x)

for some polynomial Q. Thus, we have P (T )−P (λ) = (T − λ)Q(T ). Since T − λ is not

invertible by assumption, we must have P (T )−P (λ) is also not invertible, thus P (λ) is

in σ(P (T )), and {P (λ) | λ ∈ σ(T )} ⊂ σ(P (T )).

For the converse, suppose µ ∈ σ(P (T )). Factor P (x)−µ = (x−λ1)(x−λ2) · · · (x−λn).

Then P (T ) − µ = (T − λ1) · · · (T − λn). By assumption, P (T ) − µ is not invertible,

hence T − λk is not invertible for some k. We see that this λk is a root of P (x) − µ,

so P (λk) = µ. Hence any µ ∈ σ(P (T )) can be written as P (λ) for some λ ∈ σ(T ), so

σ(P (T )) ⊂ {P (λ) | λ ∈ σ(T )}. By double inclusion, these sets are equal.

These two results help us easily find the norm of P (T ).

Theorem 1.7. For a bounded, self-adjoint operator T and any polynomial P , we have

‖P (T )‖ = sup
λ∈σ(T )

|P (λ)| . (1.4)

Proof. From Lemma 1.5 we know ‖P (T )‖ = sup
λ∈σ(P (T ))

|λ|. From Lemma 1.6 we know

each λ ∈ σ(P (T )) can be written as P (λ) for some λ ∈ σ(T ). Thus the λ ∈ σ(P (T ))

moves out to taking the supremum of all P (λ), where λ ∈ σ(T ) as shown.

Now that we fully understand how polynomials interact with our operator T , we can

move forward. To reiterate, we are assuming that T is bounded and self-adjoint, so σ(T )

is a compact set of real numbers. Let C(σ(T )) be the set of continuous complex-valued

functions on σ(T ). The Weierstrass approximation theorem tells us any f ∈ C(σ(T ))

can be uniformly approximated by polynomials. In particular, there is a sequence of

polynomials {Pn} such that lim
n→∞

Pn = f uniformly on the compact σ(T ). This implies

the natural definition

f(T ) = lim
n→∞

Pn(T ), f ∈ C(σ(T )) . (1.5)
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Without delving into the technicalities one would cover in a real analysis course, since

f(T ) is a uniform limit of polynomials it immediately satisfies

(αf + βg)(T ) = αf(T ) + βg(T ) (1.6)

(f · g)(T ) = f(T )g(T ) (1.7)

f(T ) = f(T )∗ . (1.8)

Also, if f ≥ 0 we can write f(T ) = g(T )2 = g(T )g(T ) for g =
√
f , and we see that

〈ϕ, f(T )ϕ〉 = 〈g(T )ϕ, g(T )ϕ〉 ≥ 0 (1.9)

since T is self-adjoint.

We will now develop a formulation of the inner product in terms of an integral with

respect to a certain measure. One can see this outlined in [13] or, for more details, see

[17]. Notice the map f 7→ 〈ϕ, f(T )ϕ〉 is a linear functional. The Riesz-representation

theorem says for any ϕ ∈ H, there is a positive, bounded measure µϕ,ϕ defined on σ(T )

such that for all f ∈ C(σ(T )) we have

〈ϕ, f(T )ϕ〉 =

∫
σ(T )

f(λ)dµϕ,ϕ(λ) . (1.10)

In particular, take f to be the identity map, so that 〈ϕ, ϕ〉 = µϕ,ϕ. Then, the polarization

identity allows us to extend this relation to any ϕ, ψ ∈ H. Specifically,

4µϕ,ψ = 4〈ϕ, ψ〉
= 〈ϕ+ ψ, ϕ+ ψ〉+ 〈ϕ− ψ, ϕ− ψ〉+ i (〈ϕ− iψ, ϕ− iψ〉 − 〈ϕ+ iψ, ϕ+ iψ〉)
= µϕ+ψ,ϕ+ψ + µϕ−ψ,ϕ−ψ + i (µϕ−iψ,ϕ−iψ − µϕ+iψ,ϕ+iψ)

Thus for each pair of functions ϕ, ψ ∈ H there is a complex-valued measure µϕ,ψ such

that

〈ϕ, f(T )ψ〉 =

∫
σ(T )

f(λ)dµϕ,ψ(λ) . (1.11)

These relations give us an alternative way to describe bounded, measurable functions,

in lieu of the limit of polynomials used for the continuous functions. Indeed, since we

are using integrals these operators will similarly satisfy the relations (1.6)-(1.9) above.

In addition, we have the inequality

‖f(T )‖ ≤ sup
λ∈σ(T )

|f(λ)| . (1.12)

12



If f is continuous it can be defined as a polynomial limit, giving equality above.

A topic of vital importance are the spectral measures of an operator. These will show

up repeatedly in this paper, more than the definitions of f(A), which are included as a

necessary and interesting technicality.

Consider a Borel set B ⊂ R (i.e. those sets formed from open sets in R from

complement and countable unions and intersections). We wish to find some operators

that work as “building-blocks” for other operators in a natural way. One may imagine

a δ function. This is a bit too limiting, so we look at the characteristic function.

Definition 1.8 (Characteristic Function). For any Borel set B ⊂ R, the characteristic

function χB is defined as

χB(λ) =

{
1 if λ ∈ B
0 else.

(1.13)

Since χB is measurable, we can define its operator form χB(T ). If we fix an operator

T , then we denote χB(T ) by µ(B). Each operator µ(B) is an orthogonal projection,

meaning that µ2(A) = µ(A). In addition, we have

µ(∅) = 0 (1.14)

µ(σ(T )) = I (1.15)

µ(M ∩N) = µ(M)µ(N) . (1.16)

Finally, if there is a family of pairwise disjoint Borel sets Bn, then for all ϕ ∈ H

µ

(
∞⋃
n=1

Bn

)
ϕ =

∞∑
n=1

µ(Bn)ϕ . (1.17)

This is very reminiscent of a measure (or if the reader has not seen a formal measure

before, perhaps the definition of a probability density may also come to mind). This

implies the following definition.

Definition 1.9 (Projection-valued spectral measure). For a fixed self-adjoint operator

T , the family of operators χB(T ) = µ(B) is called the projection-valued spectral measure

of T .

These operators interact with the previously-defined integral definitions through the

relation

〈ϕ, µ(B)ψ〉 = µϕ,ψ(B) . (1.18)
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Notice how this relates to the previous definition. We can realize this in integral form

as

〈ϕ, µ(B)ψ〉 =

∫
σ(T )

χB(λ) dµϕ,ψ(λ) .

Hence these projection-valued spectral measures have a way of measuring to what extent

the set B intersects with the spectrum.

Now that this calculus has been well-defined, it allows us to work with a very large

class of functions. In particular the operator e−itH can be used, which is a formal solution

to the time-independent Schrödinger equation.

There are a few more terms related to the spectrum which will be useful when proving

results about localization. It is quite common to classify sets (and domains of functions)

by their Lebesgue measure. Now that we have developed a concept of spectral measures,

we can do similarly here. We say two Borel sets A and B agree up to a set of spectral

measure 0 if µ(A−B) = µ(B − A) = 0.

1.2 Spectrum Example

It is good to look at an example which directly calculates the spectrum of an operator,

using some of the tools developed in the previous section. Consider the left shift operator

in `2(Z), call it S. This acts on a sequence (a1, a2, · · · ), ai ∈ C by the rule

S(a1, a2, · · · ) = (a2, a3, a4, · · · ) . (1.19)

We wish to find the spectrum of the shift operator. We’ll first find all eigenvalues. Hence

we want all λ such that

S(a1, a2, · · · ) = λ(a1, a2, · · · ) (1.20)

(a2, a3, · · · ) = λ(a1, a2, · · · ) . (1.21)

In this case, it is easier to first determine what these eigenvectors must be. They satisfy

the relationship ai = λai−1 for i ≥ 2, with a1 being arbitrary. Thus any eigenvector vλ

is of the form

vλ = a1(1, λ, λ2, · · · ) . (1.22)

In order to determine which λ are actually eigenvalues, we must remember we are in the

space `2(Z). A vector (a1, a2, · · · ) ∈ `2(Z) whenever
∑
|ai|2 <∞. Thus we want

|a1|2
∞∑
i=0

|λ|2i <∞ . (1.23)
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We know that a geometric series converges if and only if |λ| < 1. Thus, the set of

eigenvalues ε(S) of S is just

ε(S) = {λ ∈ C | |λ| < 1} . (1.24)

Notice that S is a bounded operator. In particular

‖Sa‖ =
∞∑
i=2

|ai|2 ≤
∞∑
i=1

|ai|2 = ‖a‖ .

Thus, taking the supremum over all a ∈ `2(Zd), we get ‖S‖ ≤ 1. Taking the sequence

a1 = 0, a2 = 1 and ai = 0 for i ≥ 3, we have ‖Sa‖ = ‖a‖ = 1. Since S is bounded its

spectrum must be closed. Therefore

σ(S) = ε(S) = {λ ∈ C | |λ| ≤ 1} . (1.25)

1.3 Measures and Subspaces

As a set, the spectrum does not actually provide much information, particularly when

considering the physical phenomena it is supposed to represent. It is the measure-

theoretic structure beneath the spectrum which determines everything. This section

describes how to partition a Hilbert space H into three distinct subspaces by considering

a measure induced by its elements.

We define a Bounded Borel measure to be a complex σ-additive function ν on the

Borel sets B(R) such that ‖ν‖, defined by

‖ν‖ = sup

{
N∑
i

|ν(Ai)|
∣∣∣Ai ∈ B(R) are pairwise disjoint

}
is finite. We call ‖ν‖ the total variation. A positive Borel measure is a non-negative

σ-additive function m on the Borel sets such that m(A) is bounded when A is bounded.

These two definitions are now used for the three types of measures that will concern

us for the rest of the paper.

Definition 1.10 (Pure point measure). A bounded Borel measure ν on R that is con-

centrated on a countable set A, so that ν(R− A) = 0.

Any x ∈ R such that ν({x}) 6= 0 is called an atom of ν. If αi = ν({xi}) and δxi(y) = 1

when y = xi and 0 otherwise, any pure point measure can be explicitly written as

ν(y) =
∑
i

αiδxi(y) .
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In general, we call a measure continuous if it has no atoms. We consider two cases of

continuous measures.

Definition 1.11 (Absolutely continuous measure). A continuous, bounded Borel mea-

sure ν is absolutely continuous (w.r.t. Lebesgue measure L) if there is a measurable

function ϕ ∈ L such that

ν(A) =

∫
A

ϕ(x) L(dx) .

Hence, if L(A) = 0 for a Borel set A, then ν(A) = 0.

Definition 1.12 (Singular continuous measure). A continuous measure ν concentrated

on a set N of Lebesgue measure 0. Thus ν({x}) = 0 for all x ∈ R, and ν(R−N) = 0.

A typical (non-trivial) example is the measure induced by the Cantor function, where

one linearly interpolates between points in the Cantor set.

We then use the following theorem to make use of these definitions.

Theorem 1.13 (Lebesgue’s Decomposition Theorem). Given a bounded Borel measure

ν, there exist measures νac, ν
′ such that ν = νac + ν ′, νac is absolutely continuous with

respect to the Lebesgue measure, and ν ′ is defined on a set of Lebesgue measure 0. Fur-

thermore, ν ′ can be decomposed into ν ′ = νsc + νpp, where νsc is singular continuous and

νpp is pure point.

We now look back at our spectral calculus to determine how to make use of these

definitions. Let T be a self-adjoint operator on H, with associated spectral measure µ.

Then for a Borel set A we know µ(A) is a projection operator whose inner product is

defined by

〈ϕ, µ(A)ψ〉 = µϕ,ψ(A) .

In addition, we also have the relation

〈ϕ, Tψ〉 =

∫
σ(T )

λdµϕ,ψ(λ)

with µϕ,ψ a complex-valued measure, and µϕ = µϕ,ϕ a positive measure. Since µ(A) is

self-adjoint, we show

|µϕ,ψ(A)| = |〈ϕ, µ(A)ψ〉|
= |〈µ(A)ϕ, µ(A)ψ〉|
≤ (〈µ(A)ϕ, µ(A)ϕ〉)

1
2 (〈µ(A)ψ, µ(A)ψ〉)

1
2

= µϕ(A)
1
2µψ(A)

1
2 . (1.26)
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More details about the following discussion can be found in [17], as these results are

more technical in nature. First, we define the sets Hpp,Hsc,Hac as

Hpp = {ϕ ∈ H | µϕ is pure point}
Hsc = {ϕ ∈ H | µϕ is singular continuous}
Hac = {ϕ ∈ H | µϕ is absolutely continuous} .

It is interesting to note that each of these subspaces are mutually orthogonal and closed

in H. In addition, H can be written as the direct sum of these three spaces. Given our

operator T , we define the restrictions to the spaces naturally. If D(T ) is the domain of

T , then

Tpp = T
∣∣
Hpp∩D(T )

, Tsc = T
∣∣
Hsc∩D(T )

, Tac = T
∣∣
Hac∩D(T )

.

These operators map the subspaces to themselves, so if ϕ ∈ Hpp, then Tppϕ ∈ Hpp.

Finally, we can define the spectra with which we were originally interested.

Definition 1.14 (Pure point spectrum). The pure point spectrum of T is σ(Tpp), de-

noted by σpp(T ).

Similarly, we define the singular continuous spectrum and absolutely continuous spec-

trum to be σ(Tsc) and σ(Tac), denoted by σsc(T ) and σac(T ) respectively.

As we consider some specific operators in the next chapter, there are two technical

details to work with. First, our main operator is defined as the sum of two other oper-

ators. To ensure this operator is self-adjoint, we need the following theorem.

Theorem 1.15 (Kato-Rellich). Suppose A is self-adjoint on H and B is bounded with

respect to A, so that

‖Bf‖ ≤ a‖Af‖+ b‖f‖, f ∈ H, 0 < a < 1, b ≥ 0 .

Then A+B is self-adjoint on H.

Second, an operator might not be self-adjoint on the entire Hilbert space H we are

considering. Instead, they may be self-adjoint on a much smaller subspace V . We are

then interested in extending this operator to a larger space F (which may be all of H,

or still a proper subspace.)

Definition 1.16 (Essentially self-adjoint). Suppose an operator T is self-adjoint on a

subspace V ⊂ H. We say T is essentially self-adjoint on F ⊃ V if there exists a unique

extension E which is self-adjoint on F , and coincides with T when restricted to V .
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It is important to note that the uniqueness of the extension allows the Kato-Rellich

theorem above to be true if A is essentially self-adjoint.

Now we can state a final result. It gives a very useful way to determine if a particular

λ is an element of the spectrum. More specifically, it tells us that any λ ∈ σ(T ) is

approximately an eigenvalue of T as well. The proof given follows [9].

Theorem 1.17 (Weyl Criterion). Let T be essentially self-adjoint on F . Then λ ∈ σ(T )

if and only if there is a sequence {ϕn} ∈ F with ‖ϕn‖ = 1 such that ‖(T − λ)ϕn‖ → 0

as n→∞.

Note, we call the sequence {ϕn} a Weyl sequence for λ and T .

Proof. The result is trivial if λ is an eigenvalue. So, suppose λ ∈ σ(T ) is not an

eigenvalue. In particular, this means ker(T −λ) = {0}, and hence T −λ is injective. So,

for restricted domain we can define an unbounded (T − λ)−1. In particular, there is a

sequence {ψn} such that ‖ψn‖ = 1 and ‖(T − λ)−1ψn‖ → ∞. Then, we can define

ϕn = [(T − λ)−1ψn]‖(T − λ)−1ψn‖−1 .

Then ‖ϕn‖ = 1 and each ‖ϕn‖ is in the domain of (T − λ) by construction. We have

‖(T − λ)ϕn‖ =
‖(T − λ)(T − λ)−1ψn‖
‖(T − λ)−1ψn‖

=
‖ψn‖

‖(T − λ)−1ψn‖
→ 0

since the denominator goes to ∞, as shown above.

For the converse, let µ ∈ ρ(T ). We know (T − µ)−1 is bounded, so there exists some

M > 0 such that for all ϕ ∈ H we have

‖(T − µ)−1ϕ‖ ≤M‖ϕ‖ .

Define fϕ = (T − µ)ϕ for all ϕ in the domain of T . Then for all such ϕ we have

(T − µ)−1fϕ = ϕ. Therefore

‖(T − µ)−1fϕ‖ ≤M‖fϕ‖
‖ϕ‖ ≤M‖(T − µ)ϕ‖ .

Hence any sequence ‖(T − µ)ϕn‖ with ‖ϕn‖ = 1 will not converge to 0.
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Chapter 2

Schrödinger Operators

The first chapter developed the necessary fundamentals to mathematically describe lo-

calization. In this chapter, we specify the operators we are using, and over what space.

Specific calculations of the spectrum of our operators are included, as well as a key result

about how one can approximate the spectrum from the generalized eigenvalues.

For the rest of the paper, we will be working over the Hilbert space

`2(Zd) =

{
u : Zd → C

∣∣∣∣∣ ∑
n∈Zd
|u(n)|2 <∞

}
(2.1)

with the inner product defined as

〈u, v〉 =
∑
n∈Zd

u(n)v(n) . (2.2)

Then the resulting norm ‖u‖ is given by

〈u, u〉
1
2 =

(∑
n∈Zd
|u(n)|2

)1/2

. (2.3)

We will also make use of two norms on Zd, namely

‖n‖∞ := sup
k=1,...,d

|nk|, ‖n‖1 :=
d∑

k=1

|nk|

where nk is the kth coordinate point of n.

This setting is a deviation from what one would normally see during an introductory

course in quantum mechanics. The space of interest is typically the square-integrable
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functions L2(R). However, the space `2(Zd) does not differ drastically from the contin-

uous case, and allows for many explicit computations. In addition, modeling a material

as a discrete grid is quite reasonable, as many solids have some crystalline structure to

them. Then, each atom or molecule lies in the vicinity of a point on Zd.

2.1 Discrete Laplacian

Typically, the (time-independent) Schrödinger equation is written in continuous space

as

Hψ = Eψ, H = −∇2 + V . (2.4)

This is of course after changing units appropriately so that the typical coefficient }2

2m
= 1.

The Laplacian −∇2 is the kinetic energy operator, and V is a potential. In this section,

we adapt the kinetic energy operator to our discrete space and explore some of its

properties.

Definition 2.1 (Discrete Laplacian). We define our kinetic energy operator H0 to be

the discrete Laplacian

(H0 u)(n) = −
∑

‖m−n‖1=1

(u(m)− u(n)) . (2.5)

From the definition of the inner product over `2(Zd), we have

〈u,H0 v〉 =
1

2

∑
n∈Zd

∑
‖m−n‖1=1

(u(n)− u(m))(v(n)− v(m)) . (2.6)

Due to the symmetry in this definition, we see H0 is self-adjoint. In addition, we can

show H0 is bounded, allowing us to make use of the developed material in the previous

chapter.

Lemma 2.2. The discrete Laplacian H0 is bounded.

Proof. First, note that a point n ∈ Zd has 2d neighbors. Then by definition

‖H0u‖ =

∑
n∈Zd

 ∑
‖m‖1=1

(u(n+m)− u(n))

2
1
2

. (2.7)
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Using the triangle inequality on the functions
∑
fm(n) =

∑
[u(n+m)− u(n)] gives

‖H0u‖ ≤
∑
‖m‖1=1

(∑
n∈Zd
|u(n+m)− u(n)|2

) 1
2

≤
∑
‖m‖1=1

(∑
n∈Zd
|u(n+m)|+ |u(n)|2

) 1
2

≤
∑
‖m‖1=1

(∑
n∈Zd
|u(n+m)|2

) 1
2

+

(∑
n∈Zd
|u(n)|2

) 1
2


≤ 4d‖u‖ .

Hence, H0 is bounded by 4d.

We will now find σ(H0) in two parts. First, we will rigorously show the derivation in

`2(Z), then briefly cover what small changes and technicalities occur in `2(Zd), d > 1.

As was mentioned in the beginning of this chapter, it is often useful to find unitary

operators that transform the operator of interest (H0) into a multiplication operator.

Then it is fairly simple to find the spectrum of this multiplication operator, which exactly

coincides with the original operator. Our choice is to introduce an operator that works

as a Fourier transform from `2(Zd) to L2([0, 2π]d). In arbitrary dimensions, this operator

is defined as

Fu(k) = û(k) =
1

(2π)d/2

∑
n∈Zd

u(n)e−in·k . (2.8)

Notice the dot product in the exponent, allowing û to be a well-defined function. Also,

the factor out in front is omitted in [13], but due to common practice it is included here.

The adjoint of F can be similarly defined as

F∗û(n) = u(n) =
1

(2π)d/2

2π∫
0

û(k)eik·ndk . (2.9)

Recalling the discussion at the beginning of this chapter, we ultimately want to be able

to find the spectrum of FH0F∗, and show it is the same as σ(H0). In order to do this,

we must show F is a unitary operator.

Lemma 2.3. F is unitary. That is, FF∗ = IL, F∗F = I`.

Proof. We can consider how F and F∗ act on the basis vectors in their respective spaces.

In particular, the domain of F is `2(Zd) and the domain of F∗ is L2([0, 2π]d). We will

show they map onto each other’s domains.
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Consider the standard orthonormal basis [en] of `2(Z), where en(m) = 1 whenever

n = m, and is 0 otherwise. Then

Fem(k) =
1

(
√

2π)d

∑
n∈Z

em(n)e−in·k =
1

(
√

2π)d
e−im·k .

since every term is 0 other than em(m). Then we have û(k) = e−im·k, so

F∗û(n) = F∗e−im·n =
1

(2π)d

2π∫
0

e−im·keik·ndk .

We can either check the value of this integral in general, or recognize the two terms as

mutually orthogonal for n 6= m, so the value of the integral is 1 if and only if m = n.

Thus, (F ∗F )em = em. Hence F ∗F = I`.

The proof is completely analogous in the FF∗ case, since the functions e−im·n form a

complete, orthonormal basis of L2([0, 2π]d).

Now that we know this transform is a unitary operator, we also know the spectrum of

H0 is the same as the spectrum of FH0F∗. We can show this latter operator is actually

quite useful and simple for calculating the spectrum.

Theorem 2.4. For any function û(k) ∈ L2([0, 2π]d) we have FH0F∗ û(k) = h0(k)û(k)

where

h0(k) = 2
d∑
j=1

(1− cos(kj)) .

Proof. We prove this only for d = 1, since the proof idea extends without issue: the

main part of the argument is most clearly illustrated when just dealing with Z.

Consider the standard orthonormal basis [en] of `2(Z), such that en(m) = 1 if an only if

n = m, otherwise it is 0. For any k ∈ Z, the only elements that are 1 away from k are

k − 1 and k + 1. Thus we have

H0en(k) = −(en(k + 1)− en(k) + en(k − 1)− en(k))

= 2en(k)− en(k + 1)− en(k − 1) .

Also, due to how this standard basis is set up, we see that en(m) = δn,m. Thus, applying

our transform we have

Fen(k) = ên(k) =
∑
m∈Z

δn,me
−imk = e−ink .
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Notice that the dot product becomes just a regular product, as we are in one dimension.

Also, the δn,m is 0 for each part of the sum except for m = n. Now, we have

(FH0F∗)Fen(k) = FH0F∗e−ink = FH0en(k)

= F [2en(k)− en(k + 1)− en(k − 1)]

= 2e−ink − e−in(k+1) − e−in(k−1)

= e−ink
(
2− (e−ik + eik)

)
= e−ink(2− 2 cos(k)) .

Thus, we see that applying FH0F∗ to some function in L2([0, 2π]) is equivalent to

multiplying by h0(k) = 2 − 2 cos(k), as
[
e−ink

]
is an orthonormal basis for all such

functions.

Since the domain of h0(k) is open, and its range is just [0, 4d], by Theorem 1.4 we have

that

σ(H0) = [0, 4d], in `2(Zd) . (2.10)

2.2 Random Potential

The second operator of interest is a random potential operator, Vω. For a given ω in the

sample space we have an instantiation of the deterministic operator V , which acts as a

multiplication operator by the random variable Vω(n).

The following development of material in probability will be rather brief, as the

reader is assumed to be familiar with the content. Consider a probability space (Ω,F ,P),

where Ω is the set of outcomes, F is the set of events, and P assigns elements of F to

probabilities. Define a random variable X to be a real-valued measurable function on

this space (i.e. X−1(A) ∈ F for any Borel set A). We can define the distribution of X

to be

P (A) = P(X ∈ A), A is a Borel set. (2.11)

We can define the support of P to be the set

supp P = {x ∈ R | P0

(
(x− ε, x+ ε)

)
> 0 for all ε > 0} . (2.12)

If there is a function g such that for any Borel set A

P0(A) =

∫
A

g(λ)dλ
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we call g the density of the random variable X.

Two random variables X and Y with distributions PX , PY are called identically dis-

tributed if PX(A) = PY (A) for all A. A family {Xi}i∈I of random variables is independent

if for any finite subset {i1, i2, . . . , ik} ⊂ I we have

P(Xi1 ∈ [a1, b1], Xi2 ∈ [a2, b2], . . . , Xik ∈ [ak, bk])

= P(Xi1 ∈ [a1, b1])P(Xi2 ∈ [a2, b2]) · · ·P(Xik ∈ [ak, bk]) .

A corollary of this definition is that the distribution also multiplies through disjoint

intervals, thus

P(Xi1 ∈ [a1, b1], Xi2 ∈ [a1, b1], . . . , Xik ∈ [ak, bk]) = P0([a1, b1]) · · ·P0([ak, bk]) .

There are quite a few typical results used throughout any probabilistic arguments. The

main result needed in this paper is the Borel-Cantelli lemma, which will be used as

below.

Lemma 2.5 (Borel-Cantelli). Given a probability space (Ω,F ,P) and a sequence of sets

{An}n∈N in F , let A∞ be the set

A∞ = {ω ∈ Ω | ω ∈ An for infinitely many n} . (2.13)

Then the following are true:

1. If
∞∑
n=1

P(An) <∞, then P(A∞) = 0.

2. If the An are all independent and
∞∑
n=1

P(An) =∞, then P(A∞) = 1.

Finally, we recall the notion of independence of events. Given some sequence of events

{An} in F , we say they are independent if for any finite subsequence {Anj}, j = 1, . . . , k

P

(
k⋂
j=1

Anj

)
=

M∏
j=1

P(Anj) . (2.14)

There is one more technical result in probability which will be required to find the

spectrum of the Hamiltonian. It says, as stated in [13], events which can happen will

happen, and infinitely often. It requires the assumption supp P0 is compact.

Lemma 2.6. There exists a set Ω0 with probability one such that for any ω ∈ Ω0, any

finite Λ ⊂ Zd, any sequence {qi}i∈Λ with qi ∈ supp P0 and any ε > 0, there exists a

sequence {jn} in Zd, ‖jn‖∞ →∞ such that

sup
i∈Λ
|qi − Vω(i+ jn)| < ε .
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Proof. We must construct our Ω0. Thus we fix a finite Λ ⊂ Zd, a sequence {qi}i∈Λ with

qi ∈ supp P0 and some ε > 0, as dictated by the hypothesis of the theorem. By the

definition of supp P0, and the fact that the qi are independent we can say

P
(

Events ω such that sup
i∈Λ
|Vω(i)− qi| < ε

)
> 0 . (2.15)

Now we wish to find a sequence of events which are independent that allow us to employ

this fact. Notice we are taking the supremum over Λ, so if we have points `n which are

pairwise far enough away (more than twice the diameter of Λ in fact) we can make sure

these points are always in disjoint “copies” of Λ, allowing the above event for i + `n to

be independent. Thus we choose such a sequence `n ∈ Zd so that the distance between

any `n, `m (with n 6= m) is more than twice the diameter of Λ. If we let An be the set

of events ω such that supi∈Λ |Vω(i + `n) − qi| < ε, then we see the An are independent

with P(An) > 0, since this is the same probability as (2.15).

We employ the Borel-Cantelli lemma (2.5). Since each An is independent with non-

zero probability, their probabilities do not converge to 0 as n → ∞, hence
∑
An must

diverge to ∞. Thus, the set

ΩΛ,{qi},ε = {ω | ω ∈ An for infinitely many n} (2.16)

has probability 1. Notice we can vary our finite set Λ, our sequence {qi} and our ε > 0

and still have this Ω be of probability one. In addition, a countable intersection of sets

of probability one also has probability one. With this, we are prepared to define Ω0.

Since supp P0 is compact, it has a countable dense set R0. In addition the set Γ of all

finite subsets of Zd is countable. Thus we can define a countable intersection of the

above Ω over this countable set R0, the finite sets Γ, and ε = 1/n for n ∈ N. Each of

these components is countable. In particular we set

Ω0 :=
⋂

Λ ∈ Γ
{qi} ∈ R0, n ∈ N

ΩΛ,{qi}, 1
n
. (2.17)

As discussed above, for each ω ∈ Ω0, given any finite Λ, a sequence {qi} and a ε, we

constructed our sequence `n. Thus Ω0 satisfies the conditions of the lemma.

To fully understand the intuition behind this lemma, consider a cube Λ in Zd, and

suppose at each point n, the IID random variables Vω(n) ∈ {0, 1}. Thus our Λ has

a sequence {qi} of 0s and 1s. Now, consider splitting Zd into disjoint cubes of the

same size. By the pigeonhole principle, there exists some Λk which has the exact same

configuration of 0s and 1s. In fact, there are infinitely many. Take the center points of
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these to be our jn, and we have constructed our sequence. If this setup is true for all ω,

we have easily found our set Ω0 with probability one.

Now we are prepared to discuss our random potential operators.

Definition 2.7 (Random potential). Vω is a random operator, defined by

(Vωϕ)(n) = Vω(n)ϕ(n), n ∈ Zd (2.18)

where the Vω(n) are independent and identically distributed (IID) random variables with

common distribution P0.

Notice for a particular ω ∈ Ω, our Vω just becomes an instantiation of the deterministic

multiplication operator V .

There are a few properties of Vω that are good to state here for technical completeness,

though they are not illuminating to prove. More details can be found in [17]. First, if

P0 has compact support, then Vω is a bounded operator. The specific bound given is

that if supp P0 ⊂ [−M,M ], then P-almost surely

sup
j∈Zd
|Vω(j)| ≤M . (2.19)

In addition, if supp P0 is not compact, Vω is self-adjoint on the space

V = {ϕ ∈ `2(Zd) | Vωϕ ∈ `2(Zd)} .

Vω is also essentially self-adjoint on the space

`2
0(Zd) = {ϕ ∈ `2(Zd) | ϕ(i) 6= 0 for finitely many points i} . (2.20)

This fact will be important, as it will help guarantee our Hamiltonian operator is essen-

tially self-adjoint on a useful space.

Finally, it is easy to determine the spectrum of Vω.

Lemma 2.8. Let Vω by a multiplication operator with function Vω(n), which has distri-

bution P0. Then P-almost surely σ(Vω) = supp P0.

Proof. By Theorem 1.4, we know σ(Vω) is the closure of im Vω(n). However, we can

consider the definition of the support. Vω(n) maps to elements x in the domain of P0,

which do not map to 0 probability, so that the image of Vω(n) is essentially R− kerP0.

The closure is then all x which have a non-zero neighborhood around them. This is

precisely the support. Hence σ(Vω) = supp P0.

26



2.3 Hamiltonian

We can now describe the discrete Hamiltonian and explore its properties.

Definition 2.9 (Discrete Hamiltonian). The discrete Hamiltonian is H = H0+V , where

H0 is the discrete Laplacian (2.5) and V is the potential multiplication operator (2.18).

The random Hamiltonian is then Hω = H0 + Vω.

Using the results of Sections 2.1 and 2.2, we can show the spectrum of Hω is P-almost

surely a fixed set, namely [0, 4d] + supp P0. While the measure-theoretic structure of

the spectrum will ultimately be of interest, it is still a good exercise to determine the

spectrum as a set.

Theorem 2.10. For P-almost all ω we have σ(Hω) = [0, 4d] + supp P0.

Proof. We have already seen σ(Vω) = supp P0, for P-almost all ω. We also have

0 ≤ dist[σ(Hω), σ(Vω)]] ≤ ‖H0‖

since whenever µ is such that dist(µ, σ(Vω)) > ‖H0‖ we have µ ∈ ρ(Hω) (see [12] for

more details.) This implies

σ(H0 + Vω) ⊂ [0, ‖H0‖] + σ(Vω)

= [0, 4d] + supp P0 .

To show the reverse inclusion we use the Weyl Criterion (1.17). Let λ ∈ [0, 4d]+supp P0.

In particular set λ = λ0 + λ1 where λ0 ∈ [0, 4d] and λ1 ∈ supp P0. By definition there

exists a Weyl sequence ϕn for λ0 such that

‖(H0 − λ0)ϕn‖ → 0, ‖ϕn‖ = 1 .

Since H0 is essentially self-adjoint on `2
0(Zd) and is in fact bounded, we may suppose

ϕn ∈ `2
0(Zd). (Note this space is taking the place of F in the Weyl criterion.) In

particular, this tells us |supp ϕn| < ∞ for each n. If we set ϕ(j)(i) = ϕ(i − j) for any

fixed j, we can see

(H0ϕ)(j)(i) = (H0ϕ)(i− j)

= −
∑

‖k−(i−j)‖1=1

[ϕ(i− j)− ϕ(k − j)]

= H0ϕ
(j)(i)
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So H0ϕ
(j) = (H0ϕ)(j). Since we have our finite sets supp ϕn, a (constant) sequence {λ1}

in supp P0, and setting ε = 1/n, we can employ Lemma 2.6 to show there is a sequence

{jn}, jn →∞ with probability one such that

sup
i∈supp ϕn

|Vω(i+ jn)− λ1| <
1

n
. (2.21)

We claim ψn = ϕ
(jn)
n , so that ψn(i) = ϕn(i− jn), is a Weyl sequence for Hω and λ. We

can calculate

‖(Hω − λ)ψn‖ = ‖(H0 − λ0 + Vω − λ1)ϕ(jn)
n ‖

≤ ‖(H0 − λ0)ϕ(jn)
n ‖+ ‖(Vω − λ1)ϕ(jn)

n ‖
= ‖(H0 − λ0)ϕn‖+ sup

i∈supp ϕ
(jn)
n

|Vωϕ(jn)
n (i)− λ1ϕ

(jn)
n (i)|

≤ ‖(H0 − λ0)ϕn‖+ sup
i∈supp ϕ

(jn)
n

|Vω(i− jn)− λ1|

where the final inequality comes from the fact that ‖ϕn‖ = 1. However, ϕn is a Weyl

sequence for H0 and λ0, so the first term goes to 0. Similarly, by our assumption on

the sequence jn the second term also goes to 0. Hence ‖(Hω − λ)ψn‖ → 0 as n → ∞.
Thus we have constructed a Weyl sequence for Hω and λ, implying that λ ∈ σ(Hω). In

particular this shows [0, 4d] + supp P0 ⊂ σ(Hω). In total, σ(Hω) = [0, 4d] + supp P0,

P-almost surely.

Finally, we introduce the idea of a generalized eigenvector, which will help us approx-

imate the spectrum in a very useful way. These have generalized eigenfunctions which

are bounded, but not necessarily strictly enough to exist in `2(Zd).

Definition 2.11 (Polynomially bounded). A function ϕ is said to be polynomially

bounded if there exist constants C, r > 0 such that ϕ(n) ≤ C‖n‖r∞ .

Definition 2.12 (Generalized eigenvalue). If there is a polynomially bounded ϕ such

that Hϕ = λϕ, we say λ is a generalized eigenvalue of H. The set of generalized

eigenvalues is denoted εg(H).

The following theorem is our approximation of the spectrum σ(H) by the generalized

eigenvalues. It will be an important final feature in our proof of localization later on.

Theorem 2.13. The spectrum of the discrete Hamiltonian H agrees up to a set of

spectral measure zero with εg(H). In particular, σ(H) = εg(H), the closure of the set of

generalized eigenvalues.

Proof. See the Appendix for a full proof.
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Chapter 3

Localization

With the mathematical tools developed, and the operators of interest at hand, we can

now discuss localization properly. Some simple results related to localization are shown

first. Then the important Green’s functions, which serve as a proxy for eigenfunction

decay, are introduced. Finally, a few results are shown using the Green’s functions which

are necessary to ultimately prove the existence of localization.

3.1 Statement of Results

We are now in a position to state the main results of interest. These will help focus the

discussion moving forward. We will follow the assumptions listed in [13], section 8.3.

Namely:

1. H0 is the discrete Laplacian on `2(Zd), defined in (2.5).

2. Vω(i), i ∈ Zd are IID random variables with a common distribution P0.

3. P0 has a bounded density g, so that P0(A) =
∫
A

g(λ) dλ and ‖g‖∞ <∞.

4. supp P0 is compact.

Under these assumptions, localization can be defined by the measure-theoretic structure

of the spectrum.

Definition 3.1 (Spectral Localization). Let Hω be the random Hamiltonian, and I

an energy interval with I ∩ σ(Hω) 6= ∅. Then Hω exhibits spectral localization if for

P-almost all ω

σc(Hω) ∩ I = ∅ .
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This describes the importance of our previous partitioning of the spectrum into its

various components. The “RAGE-theorem” (as described in [13] section 7.3) tells us

more specifically how the components of the spectrum interplay with localization. These

results are summarized below, although the proofs are well beyond the scope of this

report.

Theorem 3.2. Let Hϕ = Eϕ for ϕ ∈ `2(Zd). Then the spectral measure µ induced by

H has an atom at E, and µϕ is a pure point measure with a concentration at E.

Theorem 3.3. Any eigenfunction of E belongs to the pure point space `2(Zd)pp. More-

over, `2(Zd) is the closure of the linear span of all eigenfunctions ϕ.

In fact, some books use “eigenfunctions span the space” to be the definition of pure

point spectrum. Hence we see that the set of all eigenvalues, denoted ε(H), is a dense

subset of σpp(H). In addition, ε(H) is a countable set. This is due to `2(Zd) being a

separable Hilbert space. Thus as we move forward, showing the spectrum consists only

of eigenvalues is sufficient to prove localization.

The two main results describe how large disorder in a system, or low energy, are

both sufficient to cause localization. Note that the specifics of the low energy case are

not dealt with in this paper. The interested reader should consult [13] for a rigorous

treatment. Now, we must be precise with how we define disorder in a system.

Definition 3.4 (Disorder). The disorder of a density g is δ(g) := ‖g‖−1
∞ .

Intuitively, disorder is the spread of the density. If the density is very spread out, then

its norm will be small, causing high disorder.

Theorem 3.5. There exists E1 > E0 := inf(σ(Hω)) such that the spectrum of Hω

exhibits spectral localization in the energy interval I = [E0, E1]. Specifically, σ(Hω) ∩ I
is pure point almost surely and the corresponding eigenfunctions decay exponentially.

Theorem 3.6. For any interval I 6= ∅, there is C > 0 such that for any disorder

δ(g) ≥ C the operator Hω exhibits spectral localization in I. Specifically, σ(Hω) ∩ I is

pure point almost surely and the corresponding eigenfunctions decay exponentially.

When describing localization in `2(Zd), the natural object to consider is a discrete cube.

Thus, we make clear our notation before moving forward.

Definition 3.7 (Cube). We denote the discrete cube centered at the origin with side-

length 2L+ 1 by ΛL. The same cube centered at n is denoted ΛL(n).
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3.2 Bounded and Scattering States

Localization describes how a wave stops propagating in space. A weaker version of this

is a bounded state, which only describes the probability a particle remains in some large

finite area, without the associated exponential decay of eigenfunctions. We consider this,

and related concepts, before delving into localization.

As was mentioned in section 1.1, the spectral calculus developed allows us to look

at operators such as e−itH . Consider ψ ∈ Hpp, so that e−itHψ(x) is periodic in t. If the

analogy we have been making is to hold true, there should be some decay or boundedness

on this function. Indeed, the following theorem tells us thatHpp contains functions which

correspond to bounded states of particles. Particularly, for any ε > 0 there is cube such

that for any time, the particle will be inside ΛL with probability 1−ε, hence the particle

escapes to infinity with vanishing probability.

Theorem 3.8. Let H be a self-adjoint operator on `2(Zd), with ψ ∈ Hpp and ΛL the

cube centered at the origin with side length 2L+ 1. Then

lim
L→∞

sup
t≥0

(∑
x∈ΛL

|e−itHψ(x)|2
)

= ‖ψ‖2

lim
L→∞

sup
t≥0

∑
x/∈ΛL

|e−itHψ(x)|2
 = 0 .

Proof. Note that if ψ is an eigenfunction then, as discussed before, e−itHψ is periodic

in time, yet it is a standing wave physically. In particular, |e−itHψ|2 is independent of

time. To be explicit, let Ψ(n, t) = e−itHψ(n). Then

|Ψ(n, t)|2 = |e−itHψ(n)|2

= |e−itEψ(n)|2

= |ψ(n)|2

since |e−itE| = 1. Hence |Ψ(n, t)|2 is independent of time, as claimed. Thus a par-

ticle starting in an eigenstate remains there for all time. So the theorem is true for

eigenfunctions.

We know e−itH is unitary, meaning that e−itHeitH = eitHe−itH = I. This implies that

for all t and any Λ ⊂ Zd

‖ψ‖2 = ‖e−itHψ‖2

=
∑
x∈Λ

|e−itHψ(x)|2 +
∑
x/∈Λ

|e−itHψ(x)|2 .
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In particular, if we can show one of the equations above, the other follows. We will prove

the second equation.

We let PL be the projection onto Λ{
L, the complement of ΛL. Then we wish to

prove ‖PLe−itHψ‖ → 0 uniformly in t as L → ∞. For any finite linear combination of

eigenfunctions

ψ =
M∑
k=1

αkψk, Hψk = Ekψk

we can apply the Cauchy-Schwarz inequality and the definition of an eigenfunction to

show

‖PLe−itHψ‖ =

∣∣∣∣∣
∣∣∣∣∣
M∑
k=1

αkPLe
−itHψk

∣∣∣∣∣
∣∣∣∣∣

≤
M∑
k=1

|αk| ‖PLe−itHψk‖

=
M∑
k=1

|αk| ‖PLe−itEkψk‖]

=
M∑
k=1

|αk| ‖PLψk‖

since |e−itEk | = 1. As L increases we are evaluating ‖PLψk‖ on a smaller set. Hence for

any ε > 0 we can take L large enough so that each term in the sum is smaller than

ε

(
M∑
k=1

αk

)−1

so that the entire sum is less than ε. Let ψ ∈ Hpp be arbitrary. From our prior discussion

of how eigenfunctions are dense inHpp we can find a linear combination of eigenfunctions

ψ(M) =
∑M

k=1 αkψk such that ‖ψ − ψ(M)‖ < ε. Then we can write

‖PLe−itHψ‖ = ‖PLe−itH(ψ + ψ(M) − ψ(M))‖
≤ ‖PLe−itHψ(M)‖+ ‖PLe−itH(ψ − ψ(M))‖
≤ ‖PLe−itHψ(M)‖+ ‖ψ − ψ(M)‖ .

By assumption we can take M large enough so the right term is arbitrarily small. As

discussed in our manipulation of the sums above, we can also take large enough L to make

the left term arbitrarily small. Hence as L→∞ we indeed get ‖PLe−itHψ‖ → 0.

There is an opposite result for absolutely continuous spectra, which correspond to the

scattering states of a particle.
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Theorem 3.9. Let H be a self-adjoint operator on `2(Zd), with ψ ∈ Hac and Λ a finite

subset of Zd. Then

lim
t→∞

(∑
x∈Λ

|e−itHψ(x)|2
)

= 0 (3.1)

lim
t→∞

(∑
x/∈Λ

|e−itHψ(x)|2
)

= ‖ψ‖2 . (3.2)

Proof. Let ψ ∈ Hac. Then µψ is absolutely continuous by definition. From the previous

bound 1.26, we find that µϕ,ψ is absolutely continuous as well for any ϕ ∈ H. Then,

there is some density h with respect to Lebesgue measure compatible with µϕ,ψ. Thus

we can write

〈ϕ, e−itHψ〉 =

∫
e−itλ dµϕ,ψ(λ)

=

∫
e−itλh(λ) dλ .

Notice that the second expression is just the L1 Fourier transform of h, so it converges

to 0 as t goes to infinity. Now, consider H = `2(Zd) with ϕ = δx, x ∈ Zd. Then for each

x ∈ Λ, which is a finite set, we can write

e−itHψ(x) = 〈δx, e−itHψ〉

=

∫
e−itHh(λ) dλ→ 0 .

Thus the first sum over Λ is a finite sum of terms which converge to zero as t → ∞.

Hence, the sum itself converges to 0 as t→∞.

3.3 Green’s Functions

A tool which will be used frequently to show localization are the Green’s functions.

First, we must discuss the sets and domains on which the functions will be defined. Let

ΛL(n) be the cube centered at n ∈ Zd of side length 2L + 1. We define the inner and

outer boundaries of ΛL(n) in the natural way:

∂−ΛL(n) = {m ∈ Zd | ‖m− n‖∞ = L} (3.3)

∂+ΛL(n) = {m ∈ Zd | ‖m− n‖∞ = L+ 1} . (3.4)
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Hence ∂−ΛL(n) ∩ ΛL(n) 6= ∅ and ∂+λL(n) ∩ ΛL(n) = ∅. We also define a boundary as

the edges between the inner and outer boundaries:

∂ΛL(n) = {(n,m) | n ∈ ∂−ΛL(n), m ∈ ∂+ΛL(n)} .

Let |A| be the number of lattice points inside some A ⊂ Zd. Also define A ↗ Zd to

mean an ascending chain Am ⊂ Am+1 ⊂ Zd such that
⋃
Am = Zd.

We require a notion of restricting our operator to some subset of Zd. We follow the

approach given in [13], section 5.2.

Definition 3.10 (Restricted Laplacian). Given some Λ ⊂ Zd, we define the operator

(H0)Λ on the space `2(Λ) by

(H0)Λ(n,m) = 〈δn, H0δm〉 (3.5)

whenever n,m ∈ Λ. We do not consider n,m /∈ Λ.

Then we define HΛ = (H0)Λ + V . Thus, if E ∈ σ(HΛ), we have a finite-dimensional

matrix so that E is an eigenvalue, thus there is an eigenfunction ψ which need only solve

the equation Hψ = Eψ over Λ.

We can now define the Green’s functions.

Definition 3.11 (Green’s Function). Given Λ ⊂ Zd and an energy E /∈ σ(HΛ), define

the Green’s function to be the kernel of the resolvent (HΛ − E)−1, namely

GΛ
E(n,m) = (HΛ − E)−1(n,m) = 〈δn, (HΛ − E)−1δm〉 .

The idea of the Green’s functions is to use it as a proxy for the decay of eigenfunctions,

and thus to help show localization. The main effort in [13] and [4] goes to showing this

equivalence under certain conditions. We will use the definitions from [13] to provide a

vocabulary for the necessary tools. Assume V is a fixed potential operator.

Definition 3.12 (Exponential Decay). A Green’s function G
ΛL(n0)
E decays exponentially

on ΛL(n0) with rate γ > 0 if E is not an eigenvalue of HΛL(n0) = (H0 + V )ΛL(n0) and∣∣∣GΛL(n0)
E (n,m)

∣∣∣ = |(HΛL(n0) − E)−1(n,m)| ≤ e−γL (3.6)

for all n ∈ Λ√L(n0) and m ∈ ∂−ΛL(n0).

Definition 3.13 ((γ,E)-good Cube). A cube ΛL(n0) is (γ,E)-good for V if the Green’s

function G
ΛL(n0)
E decays exponentially with rate γ > 0.
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Definition 3.14 (γ-good Energy). An energy E is γ-good for V if there is a sequence

of cubes Λ`m ↗ Zd such that all Λ`i are (γ,E)-good for a fixed γ.

Let us consider how these Green’s functions help. Suppose ψ solves Hψ = Eψ. Define

ΓΛ(n,m) =

{
−1 if (n,m) ∈ ∂Λ,

0 otherwise .

If we let Λ{ be the complement Zd − Λ, we can then write

〈δn, Hδm〉 = HΛ ⊕HΛ{ + ΓΛ (3.7)

where HΛ⊕HΛ{ is 0 for (n,m) ∈ ∂Λ = ∂Λ{, and evaluates accordingly based on whether

(n,m) ∈ Λ or (n,m) ∈ Λ{. So, subtracting E from both sides of (3.7), then taking n0 ∈ Λ

so that HΛ{ disappears, we have

(HΛ − E)ψ(n0) = (−ΓΛψ)(n0) . (3.8)

(See [13] section 9.1 and 5.2 for a few more details.) If we assume that E is not an

eigenvalue, we can invert HΛ − E to obtain

ψ(n0) = −[(HΛ − E)−1ΓΛψ](n0) . (3.9)

By our definition of ΓΛ, we need only look at the boundary to evaluate this. Given

the inner-product definition of the Green’s function, we can explicitly write ψ(n0) as a

sum (much in the way you can multiply a function by δ(n0) and integrate to obtain the

function term):

ψ(n0) = −
∑

k ∈ ∂−Λ
m ∈ ∂+Λ

GΛ
E(n0, k)ψ(m) . (3.10)

The main result that comes from this is that the Green’s functions interplay with the

generalized eigenvalues in a useful way.

Theorem 3.15. If E is γ-good for V , then E is not a generalized eigenvalue of H =

H0 + V .

Proof. Suppose ψ is a polynomially bounded solution to Hψ = Eψ, so that

|ψ(m)| ≤ c|m|r for m 6= 0 .
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Let n ∈ Zd and ΛLk(n0) be the sequence of cubes on which E is γ-good. Choose k large

enough so that n ∈ Λ√Lk(n0). Then, we use our equality in (3.10) to write

|ψ(n)| ≤

∣∣∣∣∣∣∣∣
∑

m′ ∈ ∂−Λk

m ∈ ∂+Λk

G
ΛLk
E (n,m′)ψ(m)

∣∣∣∣∣∣∣∣ (3.11)

≤ sup
m∈∂Λ

|ψ(m)|
∑

m′∈∂−Λk

∣∣∣GΛLk
E (n,m′)

∣∣∣ . (3.12)

By assumption |ψ(m)| is polynomially bounded and G
ΛLk
E is decaying exponentially,

while the sum has terms on the order of Ld−1
k , since that is the order of the size of ∂Λ.

Also, Ld−1
k ≥ |m| = Lk. Hence there exists some constants c1, c2 such that

|ψ(n)| ≤ c1L
d−1
k e−γLk · c|m|r (3.13)

≤ c2L
d−1+r
k e−γLk . (3.14)

This decays exponentially to 0 as k →∞, since e−γLk exceeds the polynomial growth of

Ld−1+r
k . Hence |ψ(n)| = 0, so ψ ≡ 0 if it is a solution to Hψ = Eψ. Thus E is not a

generalized eigenvalue.

The proof of Green’s function decay implying localization is one by induction, where the

key step is iterating the estimate (3.13).

There are two quick corollaries, whose proofs come from the fact that σ(H) = εg(H).

Lemma 3.16. If every E ∈ [E1, E2] is γ-good for V then σ(H0 + V ) ∩ (E1, E2) = ∅.

Lemma 3.17. If all E ∈ [E1, E2] are γ-good for V , except a subset of Lebesgue measure

0, then σac(H0 + V ) ∩ (E1, E2) = ∅.

Thus the Green’s functions, and the related concepts of a (γ,E)-good cube are powerful

in showing localization occurs.

3.4 Weak Results

There are two results which closely hint at localization and the exponential decay of

eigenfunctions. The first proof shows how one can iterate the estimate (3.13), which will

be key in the next chapter.

Theorem 3.15 implies a relationship between σ(H) and whether (γ,E)-good cubes

exist throughout Zd. The next two results heavily use aspects of this theorem. We can
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iterate the estimate (3.13) to obtain a bound on the growth of approximate eigenfunc-

tions. Then we begin a probabilistic analysis of σ(Hω). First, let Λ ⊂ Zd be some set.

We define the collection of cubes well-inside Λ by

CL(Λ) = {ΛL(n) | ΛL(n) ⊂ Λ and ΛL(n) ∩ ∂Λ = ∅} . (3.15)

In addition, we define an inner boundary of width L by

∂−L (Λ) = {m ∈ Λ | dist(m, ∂−Λ) ≤ L}, dist(m,A) = inf
k∈A
‖m− k‖∞ . (3.16)

The following theorem roughly says that regions filled with (γ,E)-good cubes are also re-

gions where eigenfunctions exponentially decay. Physically, this reduces the probability

of quantum tunneling to be exponentially small.

Theorem 3.18. Let A ⊂ Zd be finite. Suppose each cube in CM(A) is (γ,E)-good and

M is large enough. For any integer k > 0, if ψ is a solution of Hψ = Eψ in A, and

n0 ∈ A such that

dist(n0, ∂
−A) ≥ k(M + 1) (3.17)

then

|ψ(n0)| ≤ e−γ
′kM sup

m∈∂−MA
|ψ(M)| . (3.18)

Proof. First, for notational ease we set the constants

r = 2d(2M + 1)d−1e−γM (3.19)

γ′ = γ − 1

M
ln
(
2d(2M + 1)d−1

)
. (3.20)

Then we have r = e−γ
′M . In addition, it is helpful to note |∂ΛM | = 2d(2M + 1)d−1.

By assumption, k > 0. We have n0 ∈ A and dist(n0, ∂
−A) ≥ (M + 1). This implies

that ΛM(n0) ∈ CM(A). Hence we apply estimate (3.10) to find

|ψ(n0)| ≤
∑

q ∈ ∂+ΛM (n0)

q′ ∈ ∂ΛM (n0)

∣∣∣GΛM (n0)
E (n0, q)

∣∣∣ |ψ(q′)|

≤ |∂ΛM(n0)|e−γM sup
q′∈∂+ΛM (n0)

|ψ(q′)|

≤ 2d(2M + 1)d−1e−γM |ψ(n1)|
= r|ψ(n1)|

for some n1 ∈ ∂+ΛM(n0). Now, if n1 ∈ ∂−MA, that is if n1 is within M of the boundary

of A, then n1 does not satisfy the hypotheses of the theorem. This would imply we have
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our bound 3.18 from the theorem statement for k = 1. In fact, by the triangle equality

we have

dist(n1, ∂
−
MA) ≥ dist(n0, ∂

−
MA)− (M + 1) . (3.21)

Thus n1 ∈ ∂−MA only if k = 1. Otherwise, we have n1 /∈ ∂−MA and we can iterate again

as ΛM(n1) ∈ CM(A). We find n2 ∈ ∂+ΛM(n1) such that

|ψ(n1)| ≤ r|ψ(n2)| (3.22)

|ψ(n0)| ≤ r2|ψ(n2)| . (3.23)

The image below illustrates this procedure. The solid lines represent inner boundaries,

while the dashed lines represent outer boundaries.

∂−A

∂−MA

n0

n1

n2

Figure 3.1: The iteration procedure. Each new point ni is chosen on the outer boundary of

the cube ΛM (ni−1), denoted by a dashed line. We choose points until a cube intersects ∂−MA,

denoted by the dotted line.

Again using the triangle inequality, we get

dist(n2, ∂
−
MA) ≥ dist(n1, ∂

−
MA)− (M + 1)

≥ dist(n0, ∂
−
MA)− 2(M + 1) .

So n2 ∈ ∂−MA only if k ≥ 2. If not, we can iterate yet again, obtaining a chain of

estimates |ψ(n0)| ≤ r`|ψ(n`)|, which hold as long as the next point in the sequence n`

does not lie in ∂−MA. By our assumption that n0 is at least k(M + 1) from ∂−A, we can

iterate at least k times. Since we can iterate at least k times, we get

|ψ(n0)| ≤ rk sup
q∈∂−MA

|ψ(q)| = e−γ
′kM sup

q∈∂−MA
|ψ(q)| . (3.24)

This is precisely the bound we wanted to show.

38



Notice if all ni /∈ ∂−MA then |ψ(n0)| ≤ ri sup
q∈A
|ψ(q)| for any i ∈ N. Since |r| < 1, this

implies ψ ≡ 0, which is a trivial case for the theorem. Hence the iteration procedure

does terminate for ψ 6= 0.

We move onto our first probabilistic analysis, which hints at a deeper theory which

will be explored in the next chapter.

Theorem 3.19. Let Rk → ∞ be a sequence of integers such that for every k, every

energy E ∈ I = [E1, E2], and a constant γ > 0 we have P(ΛRk is not (γ,E)-good) → 0

exponentially fast. Then with probability one

σac(Hω) ∩ (E1, E2) = ∅ . (3.25)

Proof. We closely follow the proof given in section 9.2 of [13], with some extra ex-

planation. Define pk = P(ΛRk is not (γ,E)-good). Since Rk → ∞, there exists some

subsequence of Rk that is increasing. By assumption, each pk → 0 exponentially, so∑
pk < ∞. The Borel-Cantelli lemma (2.5) tells us the ΛRk are not (γ,E)-good for at

most finitely many k, with probability one. Hence with probability one there exists a k0

such that ΛRk is (γ,E)-good for all k ≥ k0. In particular, we have all E ∈ [E1, E2] are

(γ,E)-good for P-almost all ω, by taking the sequence Rk with k ≥ k0.

We define three sets which we can relate through various probabilistic means. The

first set consists of (E,ω) pairs which are not γ-good for Vω, where E ∈ [E1, E2] and ω

is some outcome defining Vω.

N = {(E,ω) | E is not γ-good for Vω} . (3.26)

The other two sets are the E and ω “components” of N . Thus

NE = {ω | E is not γ-good for Vω} (3.27)

Nω = {E | E is not γ-good for Vω} . (3.28)

Thus, our first part of the proof above was showing P(NE) = 0 for any E ∈ [E1, E2].

Let L be the Lebesgue measure on R. Since N =
⋃
ωNω =

⋃
ENE , Fubini’s theorem

tells us we can integrate over E ∈ [E1, E2] or ω ∈ Ω. Specifically, we can write

E2∫
E1

P(NE) dL(E) =

∫
Ω

L(Nω) dP(ω) . (3.29)

However, we already showed P(NE) = 0 for all E ∈ [E1, E2], hence

0 =

∫
Ω

L(Nω) dP(ω) . (3.30)
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Thus L(Nω) = 0. This tells us that Nω, which is a set of energies E, has Lebesgue-

measure 0. Hence Lebesgue-almost all E are γ-good for Vω. By Lemma 3.17 we know

there is no absolutely continuous spectrum in (E1, E2), as desired.
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Chapter 4

Multiscale Analysis

We have shown the absence of absolutely continuous spectrum under strong assumptions,

namely the existence of a sequence of cubes which have an increasingly high probability of

being (γ,E)-good. It remains to be shown under what conditions this sequence actually

exists. In addition, the absence of absolutely continuous spectrum is not enough to

ensure pure point spectrum. We still have the pathological, yet physically realizable,

singular continuous spectrum that could exist. The result needed is known as multiscale

analysis. For a very detailed discussion of the various aspects of multiscale analysis

and its development, see sections 9.2 and 9.3 in [13]. For now, we will state the result

of multiscale analysis and prove what its consequences are. Recall we are working in

`2(Zd), and are interested in an energy interval I = [E1, E2].

Theorem 4.1 (Strong multiscale). There exist p > 2d, some α with 1 < α < 2p
p+2d

and

a γ > 0 such that for any disjoint cubes Λ1 = ΛLk(m) and Λ2 = ΛLk(n)

P(There is E ∈ I such that both Λ1 and Λ2 are not (γ,E)-good) ≤ L−2p
k .

As is discussed in [13], the proof of this result is more technically difficult than a weaker

analogue, although it does not require significantly different methods. The upside to

strong multiscale analysis is the relative simplicity of proving pure point spectrum as a

consequence. The weak multiscale analysis immediately implies absence of absolutely

continuous spectrum, and more machinery is required to prove there is only pure point

spectrum. As we will see in the next section, assuming the strong multiscale analysis

allows for a more transparent proof localization. After the given proof localization, a

detailed summary of the proof for strong multiscale analysis is provided.
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4.1 Proof of Localization

This section proves localization under the assumption of strong multiscale analysis.

Theorem 4.2. Assume Theorem 4.1 holds for an energy interval I = [E1, E2], so a p

and α have been found. Then with probability one,

σc(Hω) ∩ (E1, E2) = ∅ .

In particular, the spectrum of Hω inside (E1, E2) is strictly pure point, and the corre-

sponding eigenfunctions decay exponentially.

Proof. There are three main parts of this proof. We develop properties of necessary

geometric objects in Zd, then bound the probability of cubes inside these objects not

being (γ,E)-good. Finally, we use this bound to directly prove localization.

The geometric objects of interest are cubes ΛLk which are centered at the origin, and

annuli Ak which do not contain these cubes centered at the origin, but grow linearly

with them. To be specific, we choose our sequence Lk such that Lk = Lαk−1, where α > 1,

and L0 will not be defined until the proof of Theorem 4.1. Two annuli will be defined:

Ak = Λ6Lk+1
− Λ3Lk , A+

k = Λ8Lk+1
− Λ2Lk . (4.1)

Notice that Ak is not disjoint from Ak+1, and the union of all Ak is Zd − Λ3L0 . These

annuli provide sufficient “room ” to consider cubes in space, and compare them to the

generic center cube we have constructed. Also, since we have assumed any disjoint

cubes have low probability of simultaneously being not (γ,E)-good, this construction is

sufficiently general.

Now, Ak ⊂ A+
k for all k, and any n ∈ Ak has a lower bound on its distance from

∂A+
k , as described by the following lemma.

Lemma 4.3. For each n ∈ Ak, dist(n, ∂A+
k ) ≥ 1

3
‖n‖∞.

Proof. For concreteness consider the figure below, where Ak is denoted by the blue

dashed lines, and A+
k by the solid lines. Specifically, the lines give the inner boundary

of each annulus. We pick some n ∈ Ak. Notice that dist(n, ∂Λ2Lk) = ‖n‖∞− 2Lk. Since

‖n‖∞ ≥ 3Lk, we have 2
3
‖n‖∞ ≥ 2Lk. Hence

dist(n, ∂Λ2Lk) ≥ ‖n‖∞ −
2

3
‖n‖∞ =

1

3
‖n‖∞ .

Similarly dist(n, ∂Λ8Lk+1
) = 8Lk+1−‖n‖∞. Since ‖n‖∞ ≤ 6Lk+1, we also get the bound

8
6
‖n‖∞ ≤ 8Lk+1. Hence

dist(n, ∂Λ8Lk+1
) ≥ 8

6
‖n‖∞ − ‖n‖∞ =

1

3
‖n‖∞ .
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Lk 2Lk+12Lk

n

Figure 4.1: The blue dashed lines are the annulus Ak, while the solid black lines are A+
k .

The relevant distances are given.

By definition ∂Ak+1 consists of ∂Λ2Lk and ∂Λ8Lk+1
, so n is at least 1

3
‖n‖∞ from ∂A+

k .

We will use this bound in the final step of the proof. Next, we consider the probability

that ΛLk is not (γ,E)-good while at least one of the size Lk cubes in A+
k is simultaneously

not (γ,E)-good. We set

C+
k = CLk(A

+
k ) = {ΛLk(m) | ΛLk(m) ⊂ A+

k and ΛLk(m) ∩ ∂A+
k = ∅} . (4.2)

Thus C+
k is the collection of all cubes of size Lk which are far enough inside A+

k such that

they do not intersect the boundary. As stated before, we are interested in the following

probability for each k:

pk = P(For some E ∈ [E1, E2], both ΛLk and at least one Λ ∈ C+
k are not (γ,E)-good)

(4.3)

If we can show pk > 0 for at most finitely many k (P-almost surely), this would imply

for all k ≥ k0 either ΛLk is (γ,E)-good or all Λ ∈ C+
k are (γ,E)-good. In order to do

this, we prove there is some constant C such that for every k

pk ≤
C

L2p−αd
k

. (4.4)

Indeed, for any fixed ΛLk(m) ∈ C+
k , our assumption of Theorem 4.1 tells us

P(For some E ∈ [E1, E2] both ΛLk and ΛLk(m) are not (γ,E)-good) ≤ 1

L2p
k

. (4.5)
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Considering every cube in C+
k , we can bound pk using the fact that |C+

k | grows as Ldk+1,

which itself is equal to Lαdk .

pk ≤ |C+
k |

1

L2p
k

≤ C(Lαk )d
1

L2p
k

=
C

L2p−αd
k

(4.6)

By our assumption in Theorem 4.1, we know α < 2p/d. This implies that 2p− αd > 0,

so by comparison we easily have∑
k

pk ≤
∑
k

CL
−(2p−αd)
k <∞ . (4.7)

The Borel-Cantelli lemma (2.5) tells us

P(pk > 0 for infinitely many k) = 0 . (4.8)

Then, as stated above, we have shown the following:

Lemma 4.4. Assume Theorem 4.1 holds for [E1, E2]. For P-almost all ω there exists

k0 = k0(ω) such that for every k ≥ k0: For any E ∈ [E1, E2] either ΛLk is (γ,E)-good

or all cubes ΛLk(m) ∈ C+
k are (γ,E)-good.

We are now prepared to directly prove localization. Take ω such that Lemma 4.4 is true

and suppose E ∈ [E1, E2] is a generalized eigenvalue. Then Theorem 3.15 says there

does not exist a sequence Dk →∞ such that ΛDk is (γ,E)-good for all k. Thus Lemma

4.4 tells us there is a k1 such that for all k ≥ k1, as none of the ΛLk are (γ,E)-good, it

must be that every cube ΛLk(m) ∈ C+
k is (γ,E)-good.

Let ψ be a generalized eigenfunction for E. By definition ψ is polynomially bounded.

Take ‖n‖∞ large enough and find k2 ≥ k1 such that n ∈ Ak2 . As we showed earlier, we

have dist(n, ∂A+
k2

) ≥ 1
3
‖n‖∞. Since A+

k2
is finite, by replacing k(M + 1) with this bound

in Theorem 3.18, we can say

|ψ(n)| ≤ e−γ
′′‖n‖∞ sup

m∈A+
k2

|ψ(m)| . (4.9)

Note that for any m ∈ A+
k2

we have ‖m‖∞ ≤ 8Lk2+1, and since n ∈ A+
k2

we have

‖n‖∞ > Lk2 . Since ψ is polynomially bounded there is some power s such that

|ψ(m)| ≤ C0‖m‖s∞
≤ C1(8Lk2+1)s

≤ C2L
αs
k2

≤ C3‖n‖αs∞ .

44



Using this bound we have

|ψ(n)| ≤ C3e
−γ′′‖n‖∞‖n‖αs∞

≤ e−γ̃‖n‖∞

since the polynomial growth is dominated by the exponential decay. So, if E is a

generalized eigenvalue of Hω then its generalized eigenfunction ψ decays exponentially

fast. But any exponentially decaying function is definitely in `2(Zd). Hence ψ is an actual

eigenfunction, so E is a true eigenvalue. Thus any generalized eigenvalue is actually an

eigenvalue. From our discussion of Theorem 3.2 we know eigenvalues imply a dense pure

point spectrum. Since Theorem 2.13 tells us the spectrum is approximated by the set

of generalized eigenvalues, it follows that σ(Hω) is pure point in (E1, E2).

4.2 Analytic Estimates

In the next two sections we summarize the approach given in [13], chapters 10 and 11, to

prove the multiscale analysis (Theorem 4.1). Chapter 12 also provides a brief roadmap

to guide the reader through the proof. The goal of these two sections is to provide more

details than chapter 12, yet not be totally rigorous in our approach (the full proof in [13]

is 25 pages). There are a number of concepts and results necessary for the proof which

go beyond the intended level of this paper. Hence, the broad arguments and results will

be given here, with intuitive explanations intended to make multiscale analysis both a

believable result, and more accessible for those interested.

The first part of the procedure requires analytic estimates to bound the growth of

Green’s functions. We use the familiar iteration of (3.18) to obtain these. Once these

bounds are made, a probabilistic estimate is used to bring the likelihood of bad cubes

to the threshold required for multiscale analysis and the resulting proof of localization

in the previous section.

We begin by proving our induction step. That is, we assume multiscale analysis

holds for some ` = Lk. We want to show it holds for L = Lk+1. We also assume we have

our scaling factor 1 < α < 2 so that `α = L (or more specifically, the smallest integer

which is at least `α.) Thus we are presuming the probability any Λ` is (γ,E)-good is

very high, and the intermediary step is to show we have an exponential bound on the

Green’s function inside our ΛL. The idea is to show that if a certain amount of cubes Λ`

which are well-inside ΛL are (γ,E)-good, then so is ΛL. It so happens that assuming all

but one cube of size ` is (γ,E)-good is sufficient. However, to illustrate the procedure

we begin by assuming every cube of size ` inside ΛL is (γ,E)-good.
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We know from our iteration procedure (3.13) we can obtain the bound

|GΛL
E (n,m)| ≤ e−γ̃k`|GΛL

E (nk,m)|

where nk is sufficiently far away from ∂ΛL. In particular, if we are assuming every cube

of size ` inside ΛL is good, then starting at a given point we can iterate up to k = L/`

times. Hence we get a bound of the form

|GΛL
E (n,m)| ≤ e−γ̃L|GΛL

E (n′,m)| .

This is a good first start, but we need a bound on the second term if we are to obtain

exponential decay. There is a useful property of self-adjoint operators T

‖(T − µ)−1‖ =
1

dist(µ, σ(T ))
, µ ∈ ρ(T ) . (4.10)

Hence to bound our Green’s functions, which scale with the resolvent (H − E)−1, we

would expect decay when E is relatively far away from the spectrum. So we introduce

the concept of a resonant cube, which puts a bound on how bad a cube can be.

Definition 4.5 (Resonant cube). A cube is resonant if dist(E, σ(HΛL)) < e−
√
L.

Then our bound on the resolvent above tells us if a cube ΛL(n) is not resonant, then we

have some weak bound on the Green’s functions, namely

|GΛL
E (n,m)| ≤ e

√
L .

Hence we can replace our iterative bound to finally obtain |GΛL
E (n,m)| ≤ e−γ

′L, for

appropriate γ′. Notice this strongly depended on our assumption that every cube

Λ`(m) ∈ C`(ΛL) is (γ,E)-good. As it turns out, this assumption is slightly too strong

for our proof to hold. The probability this occurs is simply too low to maintain the

bound necessary to prove multiscale analysis. This will briefly be covered in the next

section.

Having failed to make use of the simplest possible case, we move to a slightly more

complicated situation. We allow a single cube to not be good (but still not be resonant.)

This will necessarily complicate our estimates above, yet make the probabilistic estimate

sufficiently small.

The key aspect of this situation is being careful near the point m0 ∈ ΛL such that

Λ`(m0) is not (γ,E)-good. In particular, any point m ∈ Λ2`(m0) is such that

Λ`(m0) ∩ Λ`(m) 6= ∅ .
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The figure below illustrates this critical region, where m ∈ Λ2`(m0) and thus intersects

our bad cube, while m′ /∈ Λ2`(m0) and stays clear.

Λ2`(m0)

Λ`(m0)

m0

m

Λ`(m)

m′

Λ`(m
′)

Figure 4.2: The bad cube, colored in red, and the “critical region” outside in grey. A cube

of size ` centered at m in the critical region intersects the bad cube, while a cube of the same

size at m′ outside the critical region does not.

Now, we once again start at a good cube and iterate our estimate (3.13) to obtain

|GΛL
E (m,n)| ≤ e−γ̃`r|GΛL

E (nr, n)| .

This estimate is iterated for as large of a value r as possible. However, we cannot iterate

approximately L/` times without worry as before, since we could hit our critical region

Λ2`(m0) at some point. So we investigate what bounds we can obtain if we have some r

such that nr = x ∈ Λ2`(m0). Applying the same estimate as before, we can obtain some

bound given that Λ`(m0) is not resonant, which scales with the size of the cube (since

the estimate uses terms across the boundary ∂Λ`(m0)). We get

|GΛL
E (x, n)| ≤ 2d(4`+ 1)d−1e

√
2`|GΛL

E (x′, n)|

where x′ ∈ ΛL − Λ2`(m0). Since x′ is not within our critical region, the cube Λ`(x
′) is

(γr, E)-good for some γr. Hence we can iterate the estimate again to obtain

|GΛL
E (x, n)| ≤ (2d)2(4`+ 1)d−1(2`+ 1)d−1e

√
2`e−γr`|GΛL

E (nr+1, n)| (4.11)
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where we pick up the extra boundary terms from the second iteration, and the expo-

nential decay terms from our (γr, E)-good cube Λ`(x
′). We need the full term

(2d)2(4`+ 1)d−1(2`+ 1)d−1e
√

2`e−γr`

to be less than 1 if we want decay to occur.

It is good to notice that as we iterate through these steps, our γ changes. We start

with γ0 in our first step, and move to some γk < γ0, so our decay does not necessarily

increase. Our ultimate goal is to guarantee γk → γ∗ > 0. As it turns out, this is indeed

possible. The following criteria is given in [13], which is consistent with the constant

above being less than 1.

Lemma 4.6. Suppose L0 ≥M(α, d) and

γk+1 ≥ γk − γk
4

Lα−1
k

− 2

L
α/2
k

.

If γ0 ≥ 2L
−1/2
0 then γk ≥ 2L

−1/2
k for all k.

Hence we can iterate our estimate even within our critical region (via the “double-step”

(4.11) shown above), and also maintain a true exponential decay rate. Thus we can

safely iterate until we are near ∂ΛL, as before. The result is summarized as

Theorem 4.7. Suppose L0 is large enough and Lk+1 = Lαk with 1 < α < 2. Also suppose

for a certain k, with ` = Lk and L = Lk+1 as before, we have the following:

1. There do not exist two disjoint cubes in C`(ΛL) which are not (γk, E)-good with

rate γk ≥ 2`−1/2.

2. No cube Λ2`(m) in ΛL is E-resonant.

3. The cube ΛL is not E-resonant.

Then ΛL is (γk+1, E)-good such that γk+1 ≥ 2L−1/2, chosen so that

γk+1 ≥ γk − γk
C

Lα−1
k

− C

L
α/2
k

.

As was discussed above, this final part guarantees our exponential decay.

Note again these are the heuristics for the weak multiscale. For the strong multiscale

we utilized, it is necessary to allow up to 3 disjoint cubes which are simultaneously

not (γ,E)-good. Of course, the work above becomes more technically involved, but the
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procedure overall is quite similar. We now consider not just one critical region, but 3

critical regions depending on how many cubes are not (γ,E)-good and how close they

are to each other. We look at the cubes of size 2` as before, but also the cubes of size

6`+ 1 and 10`+ 2, all inside ΛL. If we can guarantee these are not resonant, we can get

a similar bound as before, summarized below.

Theorem 4.8. Suppose L0 is large enough with Lk+1 = Lαk with 1 < α < 2. Also

suppose for a certain k, with ` = Lk and L = Lk+1 as before, we have the following:

1. There do not exist four disjoint cubes in C`(ΛL) which are not (γk, E)-good with

rate γk ≥ 12`−1/2.

2. No cube in

C2`(ΛL) ∪ C6`+1(ΛL) ∪ C10`+1(ΛL)

is E-resonant.

3. The cube ΛL is not E-resonant.

Then ΛL is (γk+1, E)-good such that γk+1 ≥ 12L−1/2, chosen so that

γk+1 ≥ γk − γk
C

Lα−1
k

− C

L
α/2
k

.

Again, this allows for proper exponential decay at each step, and guarantees that γk 6→ 0

as k → ∞. With the analytic parts out of the way, we turn our attention to the

probabilistic approaches that followed, and the initial scale estimate for the basis of

induction.

4.3 Probabilistic and Initial Scale Estimates

First, let us discuss where the initial analytic estimate went awry. Recall we were

assuming every cube in C`(ΛL) was (γ,E)-good, and that ΛL was not E-resonant. This

allowed us to prove ΛL was (γ,E)-good. Then, the ultimate goal for a probabilistic

bound was

P(ΛL is not (γ,E)-good) ≤ L−p

given the the same is true for Λ`, bounded by `−p. However, our assumptions give us an

estimate on the probability ΛL is not (γ,E)-good. Indeed, it must be less than

P(ΛL is not resonant) + P(One or more Λ ∈ C`(ΛL) is not (γ,E)-good) .
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While it is possible to bound the first term, the only bound we have access to for the

second term is `−p, by the induction hypothesis on Λ`. Hence the best possible case

is P(ΛL is not (γ,E)-good) becomes bounded by `−p = L−p/α. However, doing this at

each step gives us no actual progress, and is significantly worse than the bound we are

working for. Thus, assuming all cubes are good is too strong.

We then worked with a single bad cube. With slightly more work, we were able to

get the decay we wanted. The resulting probabilistic estimates are much better as a re-

sult. Recall again that the distribution P0 of the random variables Vω(n) has a bounded

density g. Without worrying about a base case L0 for now, we take the assumptions

and result from Theorem 4.7.

Theorem 4.9. For any k, let ` = Lk and L = Lk+1 = `α. If

P(Λ` is not (γ,E)-good) ≤ `−p,

then

P(ΛL is not (γ,E)-good) ≤ L−p .

The method is a typical analysis-type argument. We split the probability we want into

a bound containing three parts, then show each part is bounded by 1
3
L−p. The three

parts are the opposites of our assumptions. Namely, the probability ΛL is E-resonant,

the probability one of the cubes Λ2`(m) inside ΛL is E-resonant, and the probability

there are two disjoint cubes in ΛL which are not (γ,E)-good.

There is an estimate that is repeatedly used throughout the analytic and probabilistic

arguments, which we will make explicit here. It is called the Wegner estimate. We will

introduce the forms most-used in these arguments.

Theorem 4.10 (Wegner Estimate). Suppose P0 has a bounded density g. Then

P(dist(E, σ(HΛ)) < ε) ≤ C‖g‖∞ ε |Λ| .

If Λ1 and Λ2 are disjoint, finite subsets of Zd, then

P(There is E such that dist(E, σ(HΛ1)), dist(E, σ(HΛ2) < ε) ≤ 2C‖g‖∞ ε |Λ1| |Λ2| .

So, to bound the probability ΛL is E-resonant, we set ε = e−
√
L, and we have |ΛL| ∝

(2L+ 1)d. Hence this probability is bounded by (2L+ 1)de−
√
L. Due to this exponential

decay, for L large enough this will fall below the polynomial-type decay 1
3
L−p.
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We can similarly bound the probability one of the cubes in C2`(ΛL) is E-resonant

by just taking the probability Λ2` is E-resonant, and multiply it by the order (2L+ 1)d

other points which could have cubes of size 2` which are E-resonant. The probability

this particular cube is E-resonant is again bounded by approximately (4` + 1)de−
√

2`

(since we are changing ` to 2` everywhere). We can put this in terms of L by changing

` to L1/α, and by the same argument the exponential decay falls below 1
3
L−p for large

enough L.

Finally, we consider the probability there are two disjoint cubes which are not (γ,E)-

good. We can take a sum of products of probabilities for each individual cube. Specifi-

cally, assuming all Λ`(i) and Λ`(j) are within ΛL, we have∑
Λ`(i)∩Λ`(j)=∅

P(Λ`(i) and Λ`(j) are both not (γ,E)-good)

≤
∑
i,j∈ΛL

P(Λ`(i) is not (γ,E)-good) P(Λ`(j) is not (γ,E)-good)

By the induction hypothesis, each of these probabilities are individually less than `−p.

Since we are summing twice over ΛL, this sum is bounded by (2L+1)2d`−2p. Multiplying

the power on ` by α, we end up being able to limit this as well to 1
3
L−p. Summing up

these three situations, we get our bound of L−p that we desired.

Kirsch gives an explanation of why two “bad” cubes are not sufficient to prove the

strong multiscale analysis. It is quite analogous to the situation we saw above, when

assuming all cubes were good in the weak case.

We are already familiar with the statement of the strong multiscale analysis, The-

orem 4.1. The bound here is of the order L−2p
k for each k. We are eventually able to

obtain an estimate in terms of the probabilities of just two well-defined events, each of

which can be bounded by 1
4
L−2p.

Hopefully the reader can find the rigorous arguments presented in the proof of mul-

tiscale analysis to be more readable and attainable after this brief overview of the past

two sections. In particular, the analytic estimates can be somewhat tricky, so having a

good geometric image in mind can help significantly. The probabilities often feel like a

game of various sets, offering a sort of puzzle to obtain the desired bound.

When reading such proofs, it is natural to wonder if a bound could be tighter than

given, and if there would be any additional benefit to the proof, or the result, in such a

case. It is good to keep these questions in mind. Due to the assumptions made on the
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distribution P0, there were easier jumps which could be made. As will be briefly dis-

cussed in the next chapter, weaker assumptions require even more technical arguments

requiring yet more ingenuity.

One final remark is in place for the initial scale estimate, proven in chapter 11 of [13].

For small energies, the proof is somewhat involved and will not be reproduced in any

manner here. However, it is more intuitive to consider how high disorder immediately

implies localization.

First, high disorder means the norm of the density ‖g‖∞ is quite small, as we defined

the disorder to be δ := ‖g‖−1
∞ . We have already shown that if we assume some L0 exists

with particular properties (the exponential decay there is sufficient, for example), we get

all other cubes in the sequence outside it are (γ,E)-good. For high disorder, it is simply

a matter of obtaining the required initial bound on the probability two cubes of size L0

are not both (γ,E)-good. This will be shown in the proof of the theorem.

Theorem 4.11. Suppose P0 has bounded density g. Then for any L0 and γ > 0, there

is a ρ > 0 such that if ‖g‖∞ < ρ and ΛL0(m) ∩ ΛL0(n) = Λ1 ∩ Λ2 = ∅, then

P(There is E such that both Λ1, Λ2 are not (γ,E)-good) ≤ 1

L2p
0

.

Proof. We know |GΛ
E(m,n)| ≤ ‖(HΛ − E)−1‖ in general. Hence, if both cubes are not

good then their resolvents (HΛ−E)−1 are at least e−γL0 , by definition 3.12. But we also

know ‖(Hλ − E−1)‖ = [dist(E, σ(HΛ))]−1. Hence we can bound

P(There is E such that both ΛL0(m), ΛL0(n) are not (γ,E)-good)

≤ P(dist(E, σ(HΛ1)) ≤ eγL0 and dist(E, σ(HΛ2)) ≤ eγL0 for some E)

≤ 2C‖g‖∞eγL0(2L0 + 1)2d .

In the final step, we used the Wegner estimate (4.10) across both cubes. Notice at this

point that we do not actually have a good bound on the probability at all. However, for

any γ and L0, which are fixed at this point, we can indeed find a ρ small enough such

that if ‖g‖∞ < ρ we can bring this bound just below the threshold L−2p
0 .

The end of this proof shows the disorder may have to be extremely high to force lo-

calization at some arbitrary point in the energy interval. Yet this gives intuition about

some of the core aspects of localization. While it does naturally occur under some spe-

cific circumstances and energy levels, given a high enough random nature to a system,

localization becomes quite probable.
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Chapter 5

Discussion

As localization has been treated mathematically, experimentalists are also working hard

to create the conditions under which localization is predicted. This chapter serves to

highlight a few of the mathematical developments beyond the scope of this paper, as

well as the future direction of localization research in a physical setting.

5.1 Mathematical Theory

This section describes further mathematical results which, while surveyed by the author,

became beyond the scope of this paper. It is first good to note that the assumptions used

throughout this paper, the same as those in [13], were strictly stronger than necessary

for some of the results given. For example, the following result (due to Carmona et. al.

[4]) which solved the issue of Bernoulli potentials has weaker assumptions for dimension

d = 1.

Theorem 5.1. Given dimension d = 1 and the potential Vω(n) has density P0, suppose

supp P0 is not concentrated at a single point and P0 has a finite moment. That is, there

exists n > 0 such that ∫
|λ|n dP0(v) <∞ .

Then the spectrum of Hω is pure point with probability one and the corresponding eigen-

functions are exponentially localized.

The general approach for this proof is reminiscent of our own. Notice for the Green’s

functions GE to decay as necessary for a given E, we need this E to be relatively far

away from the spectrum. Thus the above theorem ends up being precisely equivalent to

the following:
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Theorem 5.2. Suppose we have dimension d = 1, supp P0 is not concentrated at a

single point and P0 has a finite moment. Let I be a compact interval. For any β ∈ (0, 1)

and δ > 0 there exists `0 and α > 0 such that for any E ∈ I and ` ≥ `0

P
(

dist(E, σ(HΛ`)) ≤ e−δ`
β
)
≤ e−α`

β

When localization was first being explained and mathematically proven, it was mostly

concerned with the broad conditions under which it will occur. As we have seen through-

out this chapter, the methods are concerned with showing there will be cubes in space

where eigenfunctions are exponentially localized. Due to the randomness inherent to the

phenomenon, the arguments tell us such things occur almost certainly. Some delicate

experiments back this up. Thus, given some medium through which a wave will travel,

mathematicians and physicists are increasingly confident whether localization will oc-

cur somewhere within the medium. This theory’s predictive power ends at this point.

Thus, current research is moving away from the question of if localization will occur,

and transitioning into asking where in the medium itself waves will be localized.

An informative article [7] describes work in the continuous time domain by Dr.

Mayboroda. She and her collaborators have been involved in the question of precisely

where waves will be localized given a certain medium. While their work exists firmly in

the continuous space (as opposed to our discrete grid Zd), the ramifications of what they

are working on will be of great interest to anyone who has gone through this paper. They

are working with a landscape function, called such as it creates a map of the potential

wells in a medium, predicting a few small subsets at a time where electrons will likely

be localized [5]. In particular, the (numerically evaluated) solution to a PDE reveals

a small network of subregions which define the possible areas of localization, together

with a judgment of how strong localization would be in each region.

5.2 Future Experimental Directions

Prediction and Control of Localization. The mathematical theory to predict lo-

calization coupled with modern computing has allowed significant physical research into

how it works with different waves and various media (e.g. see [3]). As was mentioned

in the introduction, LED development has been greatly affected by recent discoveries

[8]. The ability to further analyze what materials will have strong localization proper-

ties will likely allow for the creation of efficient LED lighting solutions across the world.

Furthermore, it will increase our understanding of conductivity in alloys, which has been

a very important field in solid state physics for a significant period of time.
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Diffusion Boundary of Light. Diffusion is what occurs when an area is close to

localization but does not obtain the sufficient decay of eigenfunctions, causing the tails

of the functions to “interact” with each other. Imagine a few wave packets localized

to various regions, yet there is some non-zero, noticeable probability their tail-ends in-

teract at some intersecting region. Then localization will not occur, and instead one

experiences diffusion. A wave still propagates somewhat, yet it becomes “spread out”.

The threshold between diffusion and localization in light waves specifically has become

of increasing interest among physicists [2]. The reason for this is while, as we saw in

our prior discussions, electrons can interact with each other and are greatly affected by

random potential wells, photons do not share these properties.

Weak Localization and Destructive Interference. In some sense, weak local-

ization is the physical precursor, or a sign of potential localization in an area. When

calculating the probabilities of electron wave movement through a solid, for example,

when a solid is disorganized it becomes necessary to consider the probability an electron

will complete a path back to where it began. This is the essence of weak localization. It

is easy to conceptually understand how this would begin to imply localization. If enough

electrons are being deflected in such a way to move back to where they started along

various paths, and if this continually occurs with high probability, the wave would indeed

stop propagating. If the electron waves stay within some small fixed area, they become

localized as a result. Hence, this weak localization was used as a signal for Anderson

localization. Throughout various physical experiments to understand how localization

plays into the transition between conductors and insulators, it was nearly impossible

to determine whether electrons were localized in a particular instance due to some po-

tential, or due to weak localization and the resulting destructive interference of waves.

Light offers the opportunity to investigate the latter due to their lack of interaction

with potential wells. Experiments can slowly move from diffusion to localization, in an

attempt to understand this change more fully.
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Notation

H0 p. 20 Discrete Laplacian.

V p. 25 Potential operator, works as a multiplication operator.

Vω p. 25 Random potential operator.

H p. 26 Discrete Hamiltonian, defined as H0 + V .

Hω p. 26 Discrete random Hamiltonian, defined as H0 + Vω.

`2(Zd) p. 19 Space of square-summable complex sequences.

‖n‖∞ p. 19 Supremum norm on Zd, defined as supk=1,...,d |nk|.
‖n‖1 p. 19 Sum norm on Zd, defined as

∑d
k=1 |nk|.

H p. 7 Generic Hilbert space.

Hx p. 17 The subspace {ϕ | ϕ has property x}.
Tx p. 17 Restriction of T to the space Hx.

HA p. 34 Restriction of H to the space `2(A), A ⊂ Zd.
ρ(T ) p. 7 Resolvent set of operator T .

σ(T ) p. 8 Spectrum of operator T .

σx(T ) p. 17 Spectrum of Tx.

µ(B) p. 13 Projection valued spectral measure for T , defined as χB(T ).

εg(T ) p. 14 Set of generalize eigenvalues of T .

P p. 23 Distribution of random variable (typically Vω).

supp P p. 23 Support of P .

g p. 23 Density function of P .

δ(g) p. 30 Disorder, defined as ‖g‖−1
∞ .

P(ω) p. 23 Probability event ω occurs.

ΛL(m) p. 30 Cube centered at m ∈ Zd with side length 2L+ 1.

∂−ΛL p. 34 Inner boundary of ΛL.

∂+ΛL p. 34 Outer boundary of ΛL(n).

∂ΛL p. 25 Boundary of ΛL, the union of the inner and outer boundaries.

∂−LΛ p. 36 Width L inner boundary of Λ.

25 CL(A) p. 36 Set of ΛL(m) ⊂ A with ΛL(m) ∩ ∂A = ∅.
A↗ Zd p. 34 Ascending chain Am ⊂ Am+1 ⊂ Zd whose union is Zd.
GΛ
E(n,m) p. 34 Green’s function of HΛ.
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Appendix: Generalized Eigenvalues

Here we provide a proof of Theorem 2.13 with a few more details than those in section

7.1 of [13]. We restate the theorem here for convenience.

Theorem. The spectrum of the discrete Hamiltonian H agrees up to a set of spectral

measure zero with εg(H). In particular, σ(H) = εg(H).

We first provide a few reminders and some additional machinery. We remind the reader

of the definition of a projection valued spectral measure found in section 1.1. Given our

operator H we let µ(B) = χB(H), where B is some Borel set of R. Then we can write

〈ϕ,Hψ〉 =

∫
σ(H)

λ dµϕ,ψ(λ), µϕ,ψ(B) = 〈ϕ, µ(B)ψ〉 . (5.1)

In our particular space `2(Zd) we also set µn,m(B) = 〈δn, µ(B)δm〉. Next, given some

sequence of positive real numbers {αn}n∈Zd such that
∑
αn = 1, we can define

ρ(B) =
∑
n∈Zd

αnµn,n(B) . (5.2)

Then ρ(R) = 1 and ρ is a finite positive Borel measure. We call ρ a real spectral measure.

Suppose ρ(B) = 0. Since αn 6= 0 for all n it follows that µn,n(B) = 〈δn, µ(B)δn〉 = 0 for

all n. This implies that µ(B) = 0. Conversely, if µ(B) = 0 it immediately follows that

ρ(B) = 0. Hence

ρ(B) = 0 ⇐⇒ µ(B) = 0 . (5.3)

Since µ(σ(H)) = I this also implies supp ρ = σ(H). Recall two sets A and B agree up

to a set of spectral measure zero if µ(A−B) = µ(B−A) = 0. The above condition tells

us it is also sufficient to prove ρ(A−B) = ρ(B − A) = 0.

We define ΛL = {|n| ≤ L} to be the cube of side length 2L+ 1, and ‖ψ‖S to be the

`2 norm of ψ over S ⊂ Zd. Finally, we need the following simple lemma.

57



Lemma 5.3. If ψ 6= 0 is polynomially bounded and ` is a positive integer, then there is

a sequence Ln →∞ such that
‖ψ‖ΛLn+`

‖ψ‖ΛLn

→ 1 . (5.4)

Proof. Suppose there is no such sequence Ln. Then there exists some r > 1 and L0 such

that for L ≥ L0 we have ‖ψ‖ΛL+`
≥ r‖ψ‖ΛL . Specifically, the ratio (at best) converges

to some constant larger than 1. Applying this bound k times past L0 we have

‖ψ‖ΛL0+`k
≥ rk‖ψ‖ΛL0

(5.5)

However, ψ is polynomially bounded so

‖ψ‖ΛL0+`k
≤ C(L0 + `k)M ≤ C ′kM (5.6)

for appropriate C ′,M > 0. This contradicts 5.5, as a function cannot simultaneously

exponentially grow while being polynomially bounded.

With this, we are ready to prove our theorem. We break it into two parts. The first

lemma says that approximately all λ ∈ σ(H) are generalized eigenvalues. The second

lemma says that every generalized eigenvalue is indeed in the spectrum.

Lemma 5.4. Let ρ be a real spectral measure for H = H0 + V . Then for ρ-almost all

λ ∈ σ(H) there exists a polynomially bounded solution of Hψ = λψ.

Proof. Using the Cauchy-Schwarz inequality on inner products we have

|µn,m(B)| ≤ µn,n(B)
1
2µm,m(B)

1
2 .

So, assume ρ(B) = 0. Then we know µ(B) = 0, but this only occurs when µn,n(B) = 0

for all n, which also implies µn,m(B) = 0. Thus ρ(B) = 0 implies µn,m(B) = 0 for

all n,m. We say the µn,m are absolutely continuous with respect to ρ. Since ρ is a

probability measure, the Radon-Nikodym theorem says there exist measurable densities

Fn,m such that

µn,m(B) =

∫
B

Fn,m(λ) dρ(λ) . (5.7)

Since these Fn,m are defined through an integral with respect to ρ, they are defined

up to sets of ρ-measure zero. In addition note that µn,n ≥ 0 and thus Fn,n ≥ 0, ρ-almost
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surely. If we consider our definition of ρ we see

ρ(B) =
∑

αnµn,n(B)∫
B

dρ(λ) =
∑

αn

∫
B

Fn,n(λ)dρ(λ)

∫
B

dρ(λ) =

∫
B

(∑
αnFn,n(λ)

)
dρ(λ) .

This tells us ρ-almost surely that
∑
αnFn,n(λ) = 1. In particular for any n we have

αnFn,n(λ) ≤ 1, so

Fn,n(λ) ≤ 1

αn
. (5.8)

Using this bound it is easy to show∣∣∣∣∣∣
∫
B

Fn,m(λ) dρ(λ)

∣∣∣∣∣∣ = |µn,m(B)|

≤ µn,n(B)
1
2µm,m(B)

1
2

=

∫
B

Fn,n(λ) dρ(λ)

 1
2
∫
B

Fm,m(λ) dρ(λ)

 1
2

≤ α
− 1

2
n α

− 1
2

m ρ(B) .

Differentiating with respect to ρ, we see

|Fn,m| ≤ α
− 1

2
n α

− 1
2

m . (5.9)

Now, using our original definition we have

µn,m(B) = 〈δn, µ(B)δm〉 =

∫
B

Fn,m(λ) dρ(λ) .

Using our knowledge of the spectral calculus (section 1.1), we can replace our µ(B) with

a bounded, measurable function f so that

〈δn, f(H)δm〉 =

∫
B

f(λ)Fn,m(λ) dρ(λ) . (5.10)

We take f(λ) = λg(λ) where g has compact support. Then,∫
λg(λ)Fn,m(λ)dρ(λ)

= 〈δn, Hg(H)δm〉 by definition given above

= 〈Hδn, g(H)δm〉 by self-adjointness of H.

59



Recall the definition of H(n) = H0 + V (n), where

H0u(n) = −
∑
‖e‖=1

(u(n+ e)− u(n)) = 2du(n)−
∑
‖e‖=1

u(m+ e)

since in d dimensions, any point m has 2d neighbors of distance 1, so the u(n) terms in

the sum can be combined 2d times. Also notice that V δn = V (n). Using this, we get

∫
λg(λ)Fn,m(λ)dρ(λ)

= 〈H0δn, g(H)δm〉+ 〈V δn, g(H)δm〉

=
∑
‖e‖=1

(−〈δn+e, g(H)δm〉) + 2d〈δn, g(H)δm〉+ V (n)〈δn, g(H)δm〉

=
∑
‖e‖=1

(−〈δn+e, g(H)δm〉) + (V (n) + 2d)〈δn, g(H)δm〉

=
∑
‖e‖=1

(
−
∫
g(λ)Fn+e,m(λ)dρ(λ)

)
+

∫
g(λ)(V (n) + 2d)Fn,m(λ)dρ(λ) by (5.10)

= −
∑
‖e‖=1

(∫
g(λ)[Fn+e,m(λ)− Fn,m(λ)]dρ(λ)

)
+

∫
g(λ)V (n)Fn,m(λ)dρ(λ)

=

∫
g(λ)[H0Fn,m(λ)](n)dρ(λ) +

∫
g(λ)V (n)Fn,m(λ)dρ(λ)

=

∫
g(λ)[HFn,m(λ)](n)dρ(λ) .

The text uses the notation H(n)Fn,m(λ), which is equivalent to our notation; however

ours emphasizes that we are evaluating the function HFn,m(λ) at the point n, i.e. we

have fixed m and λ throughout. To summarize this string of equations, we have∫
B

g(λ)λFn,m(λ) dρ(λ) =

∫
B

g(λ)[HFn,m(λ)](n) dρ(λ) . (5.11)

for any bounded measurable function g which has compact support. Thus for ρ-almost

all λ and fixed m ∈ Zd, we have

HFn,m(λ) = λFn,m(λ) .

In particular, if we set ψ(n) = Fn,m(λ) then Hψ = λψ. From our bound on Fn,m we

know

|ψ(n)| ≤ C0α
− 1

2
n .
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Although we have not chosen our sequence αn yet, it need only fulfill αn > 0 with∑
αn = 1. Hence we can choose αn = c(1 + ‖n‖∞)−β for appropriate c and β > d.

These are positive and will sum to 1. In particular we have

|ψ(n)| ≤ C(1 + ‖n‖∞)
d
2

+ε

for some ε > 0, since β > d. Thus ψ is polynomially bounded. Hence we see that for

ρ-almost all λ ∈ σ(H), we can explicitly construct a generalized eigenfunction ψ, proving

the lemma.

Thus we have shown that nearly all elements of the spectrum are generalized eigenvalues

as well. Next, we will show the set of generalized eigenvalues is entirely within the

spectrum.

Lemma 5.5. If Hψ = λψ has a polynomially bounded solution ψ, then λ ∈ σ(H).

Proof. Let ψ be our polynomially bounded solution. We will create a sequence of func-

tions which will allow us to use Lemma 5.3. Set

ψL(n) =

{
ψ(n) for |n| ≤ L,

0 otherwise .

We also normalize these functions as ϕL = ‖ψL‖−1ψL. We can see that (H−λ)ψL(n) = 0

as long as

n /∈ SL := {m | L− 1 ≤ |m| ≤ L+ 1} .

This is because SL represents a “transition region” between ψ and 0, so behavior may

be unexpected. However, since ψ is polynomially bounded we have

‖(H − λ)ψL‖2 ≤ ‖ψ‖2
SL

=
∑
m∈SL

|ψ(m)|2

= ‖ψ‖2
ΛL+1
− ‖ψ‖2

ΛL−2

where the final bound is just a matter of summing over two cubes. The difference is

precisely the set SL. We can apply Lemma 5.3 with ` = 3 to find a sequence Ln → ∞
such that

‖ψ‖2
ΛLn+1

‖ψ‖2
ΛLn−2

→ 1 (5.12)
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and use our previous bound to say

‖(H − λ)ϕLn‖2 ≤ ‖(H − λ)ψLn‖2‖ψLn‖−2

≤
‖ψ‖2

SL

‖ψ‖2
ΛLn−2

≤
‖ψ‖ΛLn+1

2 − ‖ψ‖2
ΛLn−2

‖ψ‖2
ΛLn−2

→ 0 .

This tells us that ϕLn is a Weyl sequence for H and λ. Using the Weyl Criterion (1.17)

we see that λ ∈ σ(H).

We complete the proof of the theorem with a final lemma.

Lemma 5.6. σ(H) is the closure of εg(H).

Proof. We have just shown in Lemma 5.5 that εg(H) ⊂ σ(H). Now, we know that σ(H)

is closed (Theorem 1.3) hence εg(H) ⊂ σ(H). If we denote σ(H) − εg(H) = εg(H){,

then the first statement of the theorem we just proved specifically says

ρ(εg(H){) = 0 =⇒ ρ
(
εg(H)

{
)

= 0 .

Since supp ρ = σ(H), we can finally say

εg(H)
{
∩ σ(H) = εg(H)

{
∩ supp ρ = ∅

Thus there are no elements λ ∈ σ(H) such that λ /∈ εg(H). Hence σ(H) ⊂ εg(H). By

double inclusion this shows σ(H) = εg(H).
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